نمایش مختصر رکورد

dc.contributor.authorMoallem, M.en_US
dc.contributor.authorHassanpour, H.en_US
dc.contributor.authorPouyan, A. A.en_US
dc.date.accessioned1399-07-08T20:26:26Zfa_IR
dc.date.accessioned2020-09-29T20:26:26Z
dc.date.available1399-07-08T20:26:26Zfa_IR
dc.date.available2020-09-29T20:26:26Z
dc.date.issued2019-06-01en_US
dc.date.issued1398-03-11fa_IR
dc.date.submitted2019-02-04en_US
dc.date.submitted1397-11-15fa_IR
dc.identifier.citationMoallem, M., Hassanpour, H., Pouyan, A. A.. (2019). Anomaly Detection in Smart Homes Using Deep Learning. Iranian (Iranica) Journal of Energy & Environment, 10(2), 126-135. doi: 10.5829/ijee.2019.10.02.10en_US
dc.identifier.issn2079-2115
dc.identifier.issn2079-2123
dc.identifier.urihttps://dx.doi.org/10.5829/ijee.2019.10.02.10
dc.identifier.urihttp://www.ijee.net/article_90081.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/88262
dc.description.abstractSmart homes enable many people, especially the elderly and patients, to live alone and maintain their independence and comfort. The realization of this goal depends on monitoring all activities in the house to report any observed anomaly immediately to their relatives or nurses. Anomaly detection in smart homes, just by existing data, is not an easy task. In this work, we train a recurrent network with raw outputs of binary sensors, including motion and door sensors, to predict which sensor will be switched on/off in the next event, and how long this on/off mode will last. Then, using Beam Search, we extend this event into <em>k</em> sequences of consecutive events to determine the possible range of upcoming activities. The error of this prediction  i.e., the distance between these possible sequences and the real string of events is evaluated using several innovative methods for measuring the spatio-temporal similarity of the sequences. Modeling this error as a Gaussian distribution allows to assess the likelihood of anomaly scores. The input sequences that are ranked higher than a certain threshold will be considered as abnormal activities. The results of the experiments showed that this method enables the detection of abnormal activities with desirable accuracy.en_US
dc.format.extent1076
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherBabol Noshirvani University of Technologyen_US
dc.relation.ispartofIranian (Iranica) Journal of Energy & Environmenten_US
dc.relation.isversionofhttps://dx.doi.org/10.5829/ijee.2019.10.02.10
dc.subjectAnomaly Detectionen_US
dc.subjectBeam Searchen_US
dc.subjectDeep Learningen_US
dc.subjectLong Short Term Memoryen_US
dc.subjectSmart Homesen_US
dc.subjectEnvironmental Engineeringen_US
dc.titleAnomaly Detection in Smart Homes Using Deep Learningen_US
dc.typeTexten_US
dc.typeOriginal Articleen_US
dc.contributor.departmentFaculty of Computer Engineering and Information Technology, Shahrood University of Technology, Shahrood, Iranen_US
dc.contributor.departmentFaculty of Computer Engineering and Information Technology, Shahrood University of Technology, Shahrood, Iranen_US
dc.contributor.departmentFaculty of Computer Engineering and Information Technology, Shahrood University of Technology, Shahrood, Iranen_US
dc.citation.volume10
dc.citation.issue2
dc.citation.spage126
dc.citation.epage135


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد