• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian (Iranica) Journal of Energy & Environment
    • Volume 11, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian (Iranica) Journal of Energy & Environment
    • Volume 11, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deep Learning Based Electricity Demand Forecasting in Different Domains

    (ندگان)پدیدآور
    Imani, M.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.614 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Electricity demand forecasting is an important task in power grids. Most of researches on electrical load forecasting have been done in the time domain. But, the electrical time series has a non-stationary inherence that makes hard load prediction. Moreover, valuable information is hidden in the electrical load sequence which is not open in the time domain. To deal with these difficulties, a new electricity demand forecasting framework is proposed in this work. In the proposed framework, at first, a new feature space of electrical load sequence is composed. The provided domain involves complementary information about shape and variations of electrical load sequence. Then, the obtained load features are integrated with the original load values in time domain to allow a rich input for predictor. Finally, a powerful deep learning technique from the family of recurrent neural networks, named long-short term memory, is used to learn electricity demand from the provided features in single and hybrid domains. The following domains are investigated in this work: frequency, cepstrum, spectral centroid, spectral roll-off, spectral flux, energy, time difference, frequency difference, Gabor and collaborative representation. The experiments show that the use of time difference domain decreases the mean absolute percent error from 0.0332 to 0.0056.
    کلید واژگان
    Frequency Domain
    Load forecasting
    Long-short Term Memory
    Time Domain

    شماره نشریه
    1
    تاریخ نشر
    2020-03-01
    1398-12-11
    ناشر
    Babol Noshirvani University of Technology
    سازمان پدید آورنده
    Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran

    شاپا
    2079-2115
    2079-2123
    URI
    https://dx.doi.org/10.5829/ijee.2020.11.01.06
    http://www.ijee.net/article_104792.html
    https://iranjournals.nlai.ir/handle/123456789/88245

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب