• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Advanced Biological and Biomedical Research
    • Volume 5, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Advanced Biological and Biomedical Research
    • Volume 5, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Potential Assessment of ANNs and Adaptative Neuro Fuzzy Inference systems (ANFIS) for Simulating Soil Temperature at diffrent Soil Profile Depths

    (ندگان)پدیدآور
    Behnia, MarjanAkbari Valani, HooshangBameri, MoslemJabalbarezi, BaharehEskandari Damaneh, Hamed
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    908.2کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Objective: Soil temperature serves as a key variable in hydrological investigations to determine soil moisture content as well as hydrological balance in watersheds. The ingoing research aims to shed lights on potential of artificial neural networks (ANNs) and Neuro-Fuzzy inference system (ANFIS) to simulate soil temperature at 5-100 cm depths. To satisfy this end, climatic and soil temperature data logged in Isfahan province synoptic station were collected. Methods: The ANNs structure was designed by one input layer, one hidden layer and finally one output layer. The network was trained using Levenberg-Marquardt training algorithm, then the trial and error was considered to determine optimal number of hidden neurons. The number of 1 to 13 neurons were evaluated and subsequently considering a trial and error test and model error, the most suitable number of neuron of hidden layer for soil depths 5, 10, 20, 30, 50 and 100 cm was found to be 3, 4, 5, 4, 5 and 3 neurons respectively. Clustering radius was set as 1.5 for subtractive clustering algorithm. Results: Results showed that estimation error tends to increase with the depth for both ANNs and ANFIS models which may be attributed to weak correlation between the input climatic variables and the soil temperature at increasing depth. Result suggested that ANFIS approach outperforms ANN in simulating soil horizons temperature.
    کلید واژگان
    Artificial neural networks
    ANFIS model
    Soil temperature
    Levenberg
    Marquardt
    Agricultural Sciences

    شماره نشریه
    2
    تاریخ نشر
    2017-04-01
    1396-01-12
    ناشر
    Sami Publishing Company
    سازمان پدید آورنده
    M.Sc. Expert in Management of Desert, Faculty of Natural Resource, University of Tehran, Iran
    M.Sc. Expert in Management of Desert, Faculty of Natural Resource, University of Tehran, Iran
    M.Sc. Expert in De-Desertification, Faculty of Agriculture and Natural Resource, Hormozgan university, Iran
    M.Sc. Expert in Management of Desert, Faculty of Natural Resource, University of Tehran, Iran
    PhD Student of De-Desertication, Faculty of Natural Resource, University of Tehran, Iran

    شاپا
    2383-2762
    2322-4827
    URI
    https://dx.doi.org/10.26655/ijabbr.2017.3.1
    http://www.ijabbr.com/article_26204.html
    https://iranjournals.nlai.ir/handle/123456789/87169

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب