• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Chemistry and Chemical Engineering (IJCCE)
    • Volume 39, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Chemistry and Chemical Engineering (IJCCE)
    • Volume 39, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling of Removal of Chromium (VI) from Aqueous Solutions Using Artificial Neural Network

    (ندگان)پدیدآور
    Erdal Tümer, AbdullahEdebali, SerpilGülcü, Şaban
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    666.9کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    There is a need for knowledge, experience, laboratory, materials, and time to conduct chemical experiments. The results depend on the process and are also quite costly. For economic and rapid results, chemical processes can be modeled by utilizing data obtained in the past. In this paper, an artificial neural network model is proposed for predicting the removal efficiency of Cr (VI) from aqueous solutions with Amberlite IRA-96 resin, as being independent of chemical processes. Multiple linear regression, linear and quadratic particle swarm optimization are also used to compare prediction success. A total of 34 experimental data were used for training and validation of the model. pH, amount of resin, contact time, and concentration were used as input data. The removal efficiency is considered as output data for each model. The statistical methods of root-mean-square error, mean absolute percentage error, variance absolute relative error and the coefficient of determination were used to evaluate the performance of the developed models. The system has been analyzed using a feature selection method to assess the influence of input parameters on the sorption efficiency. The most significant factor was found in pH. The obtained results show that the proposed ANN model is more reliable than the other models for estimating removal efficiency.
    کلید واژگان
    Artificial neural network
    Multilinear Regression
    Particle Swarm Optimization
    Cr (VI) removal, Modeling
    Computational Chemistry
    Water & Wastewater Treatment

    شماره نشریه
    1
    تاریخ نشر
    2020-02-01
    1398-11-12
    ناشر
    Iranian Institute of Research and Development in Chemical Industries (IRDCI)-ACECR
    سازمان پدید آورنده
    Department of Computer Engineering, Necmettin Erbakan University, Konya, TURKEY
    Department of Chemical Engineering, Selcuk University, Konya, TURKEY
    Department of Computer Engineering, Necmettin Erbakan University, Konya, TURKEY

    شاپا
    1021-9986
    URI
    https://dx.doi.org/10.30492/ijcce.2020.33257
    http://www.ijcce.ac.ir/article_33257.html
    https://iranjournals.nlai.ir/handle/123456789/84863

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب