• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Chemistry and Chemical Engineering (IJCCE)
    • Volume 36, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Chemistry and Chemical Engineering (IJCCE)
    • Volume 36, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Online Composition Prediction of a Debutanizer Column Using Artificial Neural Network

    (ندگان)پدیدآور
    Ramli, Nasser MohammedHussain, MohdJan, Badrul MohamedAbdullah, Bawadi
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    630.5کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The current method for composition measurement of an industrial distillation column includes an offline method, which is slow, tedious and could lead to inaccurate results. Among advantages of using online composition designed are to overcome the long time delay introduced by laboratory sampling and provide better estimation, which is suitable for online monitoring purposes. This paper presents the use of an online dynamic neural network to simultaneously predict n-butane composition of the top and bottom products of an industrial debutanizer columns. Principal component and partial least square analysis are used to determine the important variables surrounding the column prior to implementing the neural network. It is due to the different types of data available for the plant, which requires proper screening in determining the right input variables to the dynamic model. Statistical analysis is used as a model adequacy test for the composition prediction of n-butane in the column. Simulation results demonstrated that the Artificial Neural Network (ANN) can reliably predict the online composition of n-butane of the column. It is further confirmed by the statistical analysis with low Root Mean Square Error (RMSE) value indicating better prediction.
    کلید واژگان
    Principal Component Analysis
    Partial least square analysis
    Neural network
    Debutanizer column
    Mass Transfer, Separation Processes

    شماره نشریه
    2
    تاریخ نشر
    2017-05-01
    1396-02-11
    ناشر
    Iranian Institute of Research and Development in Chemical Industries (IRDCI)-ACECR
    سازمان پدید آورنده
    Chemical Engineering Department, Universiti Teknologi Petronas, Bandar Seri Iskandar, 31750 Tronoh, Perak, MALAYSIA
    Chemical Engineering Department, Faculty of Engineering, University of Malaya,50603 Kuala Lumpur, MALAYSIA
    Chemical Engineering Department, Faculty of Engineering, University of Malaya,50603 Kuala Lumpur, MALAYSIA
    Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, MALAYSIA

    شاپا
    1021-9986
    URI
    http://www.ijcce.ac.ir/article_26704.html
    https://iranjournals.nlai.ir/handle/123456789/84520

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب