• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Chemistry and Chemical Engineering (IJCCE)
    • Volume 34, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Chemistry and Chemical Engineering (IJCCE)
    • Volume 34, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of the Liquid Vapor Pressure Using the Artificial Neural Network-Group Contribution Method

    (ندگان)پدیدآور
    Tarjomannejad, Ali
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    804.5کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    In this paper, vapor pressure for pure compounds is estimated using the Artificial Neural Networks and a simple Group Contribution Method (ANN–GCM). For model comprehensiveness, materials were chosen from various families. Most of materials are from 12 families. Vapor pressure data of 100 compounds is used to train, validate and test the ANN-GCM model. Vapor pressure data were taken from literature for wide ranges of temperature (68.55-559.15 K). Based on results, the best structure for feed-forward back propagation neural network is Levenberg-Marquardt back propagation training algorithm, logsig transfer function for hidden layer and linear transfer function for output layer. The multiplayer network model consists of temperature, acentric factor, critical temperature, critical pressure and the structure of molecules as inputs, 10 neurons in the hidden layer and one neuron in the output layer corresponding to vapor pressure. The weights are optimized to minimize error between experimental and calculated data. Results show that optimum neural network architecture is able to predict vapor pressure data with an acceptable level. The trained network predicts the vapor pressure data with average relative deviation percent of 1.18%.
    کلید واژگان
    Artificial neural network
    Group contribution method
    Liquid vapor pressure
    Equation of state
    Physical Chemistry, Surface Chemistry
    Thermodynamics

    شماره نشریه
    4
    تاریخ نشر
    2015-12-01
    1394-09-10
    ناشر
    Iranian Institute of Research and Development in Chemical Industries (IRDCI)-ACECR
    سازمان پدید آورنده
    Department of Chemical Engineering, University of Tabriz, Tabriz, I.R. IRAN

    شاپا
    1021-9986
    URI
    http://www.ijcce.ac.ir/article_15461.html
    https://iranjournals.nlai.ir/handle/123456789/84411

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب