نمایش مختصر رکورد

dc.contributor.authorSaghatoleslami, Nasseren_US
dc.contributor.authorMousavi, Mahmooden_US
dc.contributor.authorSargolzaei, Javaden_US
dc.contributor.authorKhoshnoodi, Mohammaden_US
dc.date.accessioned1399-07-08T20:14:20Zfa_IR
dc.date.accessioned2020-09-29T20:14:21Z
dc.date.available1399-07-08T20:14:20Zfa_IR
dc.date.available2020-09-29T20:14:21Z
dc.date.issued2007-06-01en_US
dc.date.issued1386-03-11fa_IR
dc.date.submitted2005-08-12en_US
dc.date.submitted1384-05-21fa_IR
dc.identifier.citationSaghatoleslami, Nasser, Mousavi, Mahmood, Sargolzaei, Javad, Khoshnoodi, Mohammad. (2007). A Neuro-Fuzzy Model for a Dynamic Prediction of Milk Ultrafiltration Flux and Resistance. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 26(2), 53-61.en_US
dc.identifier.issn1021-9986
dc.identifier.urihttp://www.ijcce.ac.ir/article_7653.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/84130
dc.description.abstract<em>A neuro-fuzzy modeling tool (ANFIS) has been used to dynamically model cross flow ultrafiltration of milk. It aims to predict permeate flux and total hydraulic resistance as a function of transmembrane pressure, pH, temperature, fat, molecular weight cut off, and processing time. Dynamic modeling of ultrafiltration performance of colloidal systems (such as milk) is very important for designing of a new process and better understanding of the present process. Such processes show complex non-linear behavior due to unknown interactions between compounds of a colloidal system. In this paper, ANFIS, Multilayer Perceptron (MLP) and FIS were applied to compare results. The ANFIS approximation gave some advantage over the other methods. The results reveal that there is an excellent agreement between the tested (not used in training) and modeled data, with a good degree of accuracy. Furthermore, the trained ANFIS are capable of accurately capture the non-linear dynamics of milk ultrafiltration even for a new condition that has not been used in the training process (tested data). In addition, ANFIS and Multilayer Perceptron (MLP) are compared and the Matlab software was adopted to implement the method.</em>en_US
dc.format.extent417
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherIranian Institute of Research and Development in Chemical Industries (IRDCI)-ACECRen_US
dc.relation.ispartofIranian Journal of Chemistry and Chemical Engineering (IJCCE)en_US
dc.subjectNeuro-fuzzy inference systemen_US
dc.subjectMilk ultrafiltrationen_US
dc.subjectpermeate fluxen_US
dc.subjectTotal hydraulic resistanceen_US
dc.subjectMultilayer Perceptronen_US
dc.subjectFuzzy Inference Systemen_US
dc.subjectMass Transfer, Separation Processesen_US
dc.titleA Neuro-Fuzzy Model for a Dynamic Prediction of Milk Ultrafiltration Flux and Resistanceen_US
dc.typeTexten_US
dc.typeResearch Articleen_US
dc.contributor.departmentDepartment of Chemical Engineering, University of Ferdowsi, P.O. Box 9177948944 Mashhad, I. R. IRANen_US
dc.contributor.departmentDepartment of Chemical Engineering, University of Ferdowsi, P.O. Box 9177948944 Mashhad, I. R. IRANen_US
dc.contributor.departmentDepartment of Chemical Engineering, University of Ferdowsi, P.O. Box 9177948944 Mashhad, I. R. IRANen_US
dc.contributor.departmentDepartment of Chemical Engineering, University of Sistan and Baluchestan, P.O. Box 98164 -161 Zahedan, I. R. IRANen_US
dc.citation.volume26
dc.citation.issue2
dc.citation.spage53
dc.citation.epage61


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد