• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Chemistry and Chemical Engineering (IJCCE)
    • Volume 27, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Chemistry and Chemical Engineering (IJCCE)
    • Volume 27, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Determination of Surface Tension and Viscosity of Liquids by the Aid of the Capillary Rise Procedure Using Artificial Neural Network (ANN)

    (ندگان)پدیدآور
    Ahadian, SamadMoradian, SiamakMohseni, MohsenAmani Tehran, MohammadSharif, Farhad
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    164.2کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The present investigation entails a procedure by which the surface tension and viscosity of liquids could be redicted.To this end, capillary experiments were performed for porous media by utilizing fifteen different liquids and powders. The time of capillary rise to a certain known height of each liquid in a particular powder was recorded. Two artificial neural networks (ANNs) were designed and used to separately predict the surface tension and the viscosity of each liquid respectively. The surfacetension predictornetwork had six inputs, namely:particlesize,bulk density, packing density and surface free energy of the powders as well as the density of the probe liquids together with the capillary rise time of the liquids in the corresponding powders. The viscosity predictor network had surface tension as an extra input. In order to correlate the surface tension and viscosity as predicted by the corresponding artificial neural network to their experimentally determined equivalents, two different statistical parameters namely the product moment correlation coefficient (r2) and the performance factor (PF/3) were used. It must be noted that for a perfect correlation r2 = 1 and PF/3 = 0. The results of the present work clearly showed that the artificial neural network approach is able to predict the surface tension (i.e. r2 = 0.95, PF/3 = 16) and viscosity (i.e.  r2 = 0.998 , PF/3 = 13) of the probe liquids with unsurpassed accuracy.
    کلید واژگان
    Surface tension
    Viscosity
    Capillary rise method
    artificial neural network (ANN)
    Physical Chemistry, Surface Chemistry
    Thermodynamics

    شماره نشریه
    1
    تاریخ نشر
    2008-03-01
    1386-12-11
    ناشر
    Iranian Institute of Research and Development in Chemical Industries (IRDCI)-ACECR
    سازمان پدید آورنده
    Departent of Polymer and Color Engineering, Amirkabir University of Technology, P.O. Box 15875-4413 Tehran, I.R. IRAN
    Departent of Polymer and Color Engineering, Amirkabir University of Technology, P.O. Box 15875-4413 Tehran, I.R. IRAN
    Departent of Polymer and Color Engineering, Amirkabir University of Technology, P.O. Box 15875-4413 Tehran, I.R. IRAN
    Department of Textile Engineering, Amirkabir University of Technology, P.O. Box 15875-4413 Tehran, I.R. IRAN
    Departent of Polymer and Color Engineering, Amirkabir University of Technology, P.O. Box 15875-4413 Tehran, I.R. IRAN

    شاپا
    1021-9986
    URI
    http://www.ijcce.ac.ir/article_6928.html
    https://iranjournals.nlai.ir/handle/123456789/84023

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب