An Efficient Coupled Genetic Algorithm-NLP Method for Heat Exchanger Network Synthesis
(ندگان)پدیدآور
پدیدآور نامشخصنوع مدرک
TextFull article
زبان مدرک
Englishچکیده
Synthesis of heat exchanger networks (HENs) is inherently a mixed integer and nonlinear programming (MINLP) problem. Solving such problems leads to difficulties in the optimization of continuous and binary variables. This paper presents a new efficient and robust method in which structural parameters are optimized by genetic algorithm (G.A.) and continuous variables are handled due to a modified objective function for maximum energy recovery (MER). Node representation is used for addressing the exchangers and networks are considered as a sequence of genes. Each gene consists of nodes for generating different structures within a network. Results show that this method may find new or near optimal solutions with a less than 2% increase in Hen annual costs.
کلید واژگان
Heat exchanger networks (HENs)optimization
Genetic Algorithm (G.A.)
NLP formulation
Modeling and Simulation
Transport Phenomena,
شماره نشریه
1تاریخ نشر
2008-01-011386-10-11
ناشر
Iranian Association of Chemical Engineers(IAChE)شاپا
1735-53972008-2355




