• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Transportation Engineering
    • Volume 3, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Transportation Engineering
    • Volume 3, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identification of High Crash Road Segment using Genetic Algorithm and Dynamic Segmentation

    (ندگان)پدیدآور
    Boroujerdian, Amin MirzaFetanat, MasoudAbolhasannejad, Vahid
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    296.1کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    This paper presents an evolutionary algorithm for recognizing high and low crash road segments using Genetic Algorithm as a dynamic segmentation method. Social and economic costs as well as physical and mental injuries make the governments perceiving to road safety indexes in order to diminish the consequences of road accidents. Due to the limitation of budget for safety improvement of all parts of the road, the road segments with more accidents should be recognized for safety budget assignment. So, considering this fact it's important to identify the segments with high and low number of accidents to optimize the road safety program. In this study, a novel chromosome coding method and a fitness function which are consistent with Genetic Algorithm are proposed. The proposed methodology is also validated by using two mathematical parameters so that the results confirm that the proposed modeling works properly. Afterward, the proposed dynamic segmentation method is compared with the other static segmentation methods along 51 km of Shahrood–Sabzevar highway. The proposed method may have more advantages comparing to static segmentation methods for all of the performance indexes which were considered in this study. The proposed method has a variance about two times higher than the one for accident density in comparison with the other static segmentation methods. About 62% and 34% improvement is achieved in average of segments accident density and total segments density respectively in comparison with the other fixed methods.
    کلید واژگان
    Genetic algorithm
    Dynamic Segmentation
    Road Accident Segments

    شماره نشریه
    2
    تاریخ نشر
    2015-10-01
    1394-07-09
    ناشر
    Tarrahan Parseh Transportation Research Institute
    سازمان پدید آورنده
    Department of Civil & Environmental Engineering, Tarbiat Modares University, Tehran, Iran
    Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
    Department of Civil Engineering, Birjand University of Technology, Birjand, Iran, School of Transportation, Southeast University, Nanjing, China

    شاپا
    2322-259X
    2538-3728
    URI
    https://dx.doi.org/10.22119/ijte.2015.13836
    http://www.ijte.ir/article_13836.html
    https://iranjournals.nlai.ir/handle/123456789/78585

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب