• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • The ISC International Journal of Information Security
    • Volume 11, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • The ISC International Journal of Information Security
    • Volume 11, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Optimal Utilization of Cloud Resources using Adaptive Back Propagation Neural Network and Multi-Level Priority Queue Scheduling

    (ندگان)پدیدآور
    Saeed, AnwarYousif, MuhammadFatima, AreejAbbas, SagheerAdnan Khan, MuhammadAnum, LeenaAkram, Ali
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    822.2کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    ORIGINAL RESEARCH PAPER
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    With the innovation of cloud computing industry lots of services were provided based on different deployment criteria. Nowadays everyone tries to remain connected and demand maximum utilization of resources with minimum timeand effort. Thus, making it an important challenge in cloud computing for optimum utilization of resources. To overcome this issue, many techniques have been proposed shill no comprehensive results have been achieved. Cloud Computing offers elastic and scalable resource sharing services by using resource management. In this article, a hybrid approach has been proposed with an objective to achieve the maximum resource utilization. In this proposed method, adaptive back propagation neural network and multi-level priority-based scheduling are being carried out for optimum resource utilization. This hybrid technique will improve the utilization of resources in cloud computing. This shows result in simulation-based on the form of MSE and Regression with job dataset, on behalf of the comparison of three algorithms like Scaled Conjugate Gradient (SCG), Levenberg Marquardt (LM) and Bayesian Regularization (BR). BR gives a better result with 60 hidden layers Neurons to other algorithms. BR gives 2.05 MSE and 95.8 regressions in Validation, LM gives 2.91 MSE and 94.06 regressions with this and SCG gives 3.92 MSE and 91.85 regressions.
    کلید واژگان
    Neural Networks
    Priority Scheduling
    Multilevel
    Backpropagation
    Multi-level Priority Queue Scheduling
    ABPNN-MLPQS

    شماره نشریه
    3
    تاریخ نشر
    2019-08-01
    1398-05-10
    ناشر
    Iranian Society of Cryptology
    سازمان پدید آورنده
    Department of Computer Science, Virtual University, Lahore, Pakistan
    Department of Computer Science, National College of Business Administration & Economics, Lahore, Pakistan
    Department of Computer Science, National College of Business Administration & Economics, Lahore, Pakistan
    Department of Computer Science, National College of Business Administration & Economics, Lahore, Pakistan
    Department of Computer Science, National College of Business Administration & Economics, Lahore, Pakistan
    Department of Computer Science, National College of Business Administration & Economics, Lahore, Pakistan
    Department of Computer Science, National College of Business Administration & Economics, Lahore, Pakistan

    شاپا
    2008-2045
    2008-3076
    URI
    https://dx.doi.org/10.22042/isecure.2019.11.0.19
    http://www.isecure-journal.com/article_90883.html
    https://iranjournals.nlai.ir/handle/123456789/73457

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب