• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Chemical Health Risks
    • Volume 4, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Chemical Health Risks
    • Volume 4, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of the GC-MS Retention Indices for a Diverse Set of Terpenes as Constituent Components of Camu-camu (Myrciaria dubia (HBK) Mc Vaugh) Volatile Oil, Using Particle Swarm Optimization-Multiple Linear Regression (PSO-MLR)

    (ندگان)پدیدآور
    Mohammadhosseini, Majid
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    872.4کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    A reliable quantitative structure retention relationship (QSRR) study has been evaluated to predict the retention indices (RIs) of a broad spectrum of compounds, namely 118 non-linear, cyclic and heterocyclic terpenoids (both saturated and unsaturated), on an HP-5MS fused silica column. A principal component analysis showed that seven compounds lay outside of the main cluster. After elimination of the outliers, the data set was divided into training and test sets involving 80 and 28 compounds. The method was tested by application of the particle swarm optimization (PSO) method to find the most effective molecular descriptors, followed by multiple linear regressions (MLR). The PSO-MLR model was further confirmed through “leave one out cross validation†(LOO-CV) and “leave group out cross validation†(LGO-CV), as well as external validations. The promising statistical figures of merit associated with the proposed model (R2train=0.936, Q2LOO=0.928, Q2LGO=0.921, F=376.4) confirm its high ability to predict RIs with negligible relative errors of predictions (REP train=4.8%, REP test=6.0%).
    کلید واژگان
    Particle swarm Optimization-multiple linear regression (PSO-MLR)
    Quantitative structure-retention relationship (QSRR)
    Retention indices (RIs)
    Prediction Essential oil
    Cross validation
    External validation GC GC-MS

    شماره نشریه
    1
    تاریخ نشر
    2014-05-01
    1393-02-11
    ناشر
    Islamic Azad University, Damghan Branch, Islamic Republic of Iran
    سازمان پدید آورنده
    Islamic Azad University, Shahrood Branch, Shahrood, Iran

    شاپا
    2251-6719
    2251-6727
    URI
    https://dx.doi.org/10.22034/jchr.2018.544059
    http://www.jchr.org/article_544059.html
    https://iranjournals.nlai.ir/handle/123456789/69814

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب