• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Energy Management and Technology
    • Volume 3, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Energy Management and Technology
    • Volume 3, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Clustering Electricity Big Data for Consumption Modeling Using Comparative Strainer Method for High Accuracy Attainment and Dimensionality Reduction

    (ندگان)پدیدآور
    Azizi, ElnazKharrati, HamedMohammadi-ivatloo, BehnamMohammadpour Shotorbani, Amin
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    594.4کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    In smart grid, the relation between grid and customer is bidirectional. Therefore, analyzing load consumption patterns is essential for optimal and efficient operation and planning of smart grid in addition to precise load forecasting. However, emergence of the advanced metering infrastructure, which enables a two-way flow of data and power consumption between consumers and suppliers, has resulted in data explosion in smart grid applications. Because of the volume and velocity of data generation in recent years, traditional data analysis methods are inefficient. Therefore new methods of analyzing such as “data mining", which segments data before analyzing and manipulating, are recommended. Clustering, as a well-known method in data mining, has extensively been employed in recent electricity industry. This article argues that even though clustering methods can be directly applied to raw data of electricity consumption, this approach is inefficient since it requires storage and processing of high-dimensional and high-volume data. Hence, it would be more beneficial to cluster consumption data in a space of reduced dimension. In this paper, we propose a new structure for dimension reduction to refine the electricity consumption data. The results are compared with the famous method of dimension reduction, principal component analysis (PCA). We evaluate our technique using datasets from Kaveh, an industrial area in Iran.
    کلید واژگان
    smart grid
    Advanced metering infrastructure
    Data mining
    Clustering
    Principal component analysis
    Energy analysis, modelling, and prediction

    شماره نشریه
    1
    تاریخ نشر
    2019-03-01
    1397-12-10
    ناشر
    Iran Energy Association (IEA)
    سازمان پدید آورنده
    Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
    Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.
    Faculty of Electrical and Computer Engineering, University of Tabriz , Tabriz, Iran
    Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz,Iran

    شاپا
    2588-3372
    URI
    https://dx.doi.org/10.22109/jemt.2019.115900.1058
    http://www.jemat.org/article_82741.html
    https://iranjournals.nlai.ir/handle/123456789/68199

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب