• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Computer & Robotics
    • Volume 9, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Computer & Robotics
    • Volume 9, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Feature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine

    (ندگان)پدیدآور
    Elikaei Ahari, MojganNasersharif, Babak
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    120.0کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Research (Full Papers)
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods.  In filter methods, features subsets are selected due to some measures like inter-class distance, features statistical independence or information theoretic measures. Even though, wrapper methods use a classifier to evaluate features subsets by their predictive accuracy (on test data) by statistical resampling or cross-validation. Filter methods usually use only one measure for feature selection that does not necessarily produce the best result. In this paper, we proposed to use the classification error measures besides to filter measures where our classifier is support vector machine (SVM). To this end, we use multi objective genetic algorithm. In this way, one of our feature selection measure is SVM classification error. Another measure is selected between mutual information and Laplacian criteria which indicates informative content and structure preserving property of features, respectively. The evaluation results on the UCI datasets show the efficiency of this method.
    کلید واژگان
    feature selection
    Multi objective genetic algorithm
    support vector machine

    شماره نشریه
    2
    تاریخ نشر
    2016-09-01
    1395-06-11
    ناشر
    Qazvin Islamic Azad University
    سازمان پدید آورنده
    Faculty of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
    Electrical and Computer Engineering Department, K.N. Toosi University of Technology, Iran

    شاپا
    2345-6582
    2538-3035
    URI
    http://www.qjcr.ir/article_694.html
    https://iranjournals.nlai.ir/handle/123456789/58106

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب