• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Computer & Robotics
    • Volume 8, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Computer & Robotics
    • Volume 8, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches

    (ندگان)پدیدآور
    Khalatbari, LeilaKangavari, Mohammad Reza
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    332.3کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functional responsibilities. Consequently protein function prediction is a momentous task in bioinformatics. Protein function can be elucidated from its structure. Protein secondary structure prediction has attracted great attention since it's the input feature of many bioinformatics problems. The variety of proposed computational methods for protein secondary structure prediction is very extensive. Nevertheless they couldn't achieve much due to the existing obstacles such as abstruse protein data patterns, noise, class imbalance and high dimensionality of encoding schemes of amino acid sequences. With the advent of machine learning and later ensemble approaches, a considerable elevation was made. In order to reach a meaningful conclusion about the strength, bottlenecks and limitations of what have been done in this research area, a review of the literature will be of great benefit. Such review is advantageous not only to wrap what has been accomplished by far but also to cast light for the future decisions about the potential and unseen solutions to this area. Consequently in this paper it's aimed to review different computational approaches for protein secondary structure prediction with the focus on machine learning methods, addressing different parts of the problem's area.
    کلید واژگان
    Protein secondary structure prediction
    Machine Learning
    Neural Networks
    Support Vector Machines
    Ensemble methods

    شماره نشریه
    1
    تاریخ نشر
    2015-03-01
    1393-12-10
    ناشر
    Qazvin Islamic Azad University
    سازمان پدید آورنده
    Department of Computer Engineering, Faculty of Electrical, IT and Computer Science, Qazvin Branch, Islamic Azad University, Qazvin, Iran
    Department of Computer Engineering, Iran University of Science and Technology, Tehran, Iran

    شاپا
    2345-6582
    2538-3035
    URI
    http://www.qjcr.ir/article_669.html
    https://iranjournals.nlai.ir/handle/123456789/58088

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب