• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Optimization in Industrial Engineering
    • Volume 12, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Optimization in Industrial Engineering
    • Volume 12, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Evolutionary Algorithm Based on a Hybrid Multi-Attribute Decision Making Method for the Multi-Mode Multi-Skilled Resource-constrained Project Scheduling Problem

    (ندگان)پدیدآور
    Hosseinian, Amir HosseinBaradaran, Vahid
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    646.7کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Manuscript
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    This paper addresses the multi-mode multi-skilled resource-constrained project scheduling problem. Activities of real world projects often require more than one skill to be accomplished. Besides, in many real-world situations, the resources are multi-skilled workforces. In presence of multi-skilled resources, it is required to determine the combination of workforces assigned to each activity. Hence, in this paper, a mixed-integer formulation called the MMSRCPSP is proposed to minimize the completion time of project. Since the MMSRCPSP is strongly NP-hard, a new genetic algorithm is developed to find optimal or near-optimal solutions in a reasonable computation time. The proposed genetic algorithm (PGA) employs two new strategies to explore the solution space in order to find diverse and high-quality individuals. Furthermore, the PGA uses a hybrid multi-attribute decision making (MADM) approach consisting of the Shannon's entropy method and the VIKOR method to select the candidate individuals for reproduction. The effectiveness of the PGA is evaluated by conducting numerical experiments on several test instances. The outputs of the proposed algorithm is compared to the results obtained by the classical genetic algorithm, harmony search algorithm, and Neurogenetic algorithm. The results show the superiority of the PGA over the other three methods. To test the efficiency of the PGA in finding optimal solutions, the make-span of small size benchmark problems are compared to the optimal solutions obtained by the GAMS software. The outputs show that the proposed genetic algorithm has obtained optimal solutions for 70% of test problems.
    کلید واژگان
    RCPSP
    Multi-skilled resources
    Optimization
    Meta-heuristics
    MADM
    Project scheduling

    شماره نشریه
    2
    تاریخ نشر
    2019-07-01
    1398-04-10
    ناشر
    QIAU
    سازمان پدید آورنده
    Department of Industrial Engineering, Faculty of Engineering, Islamic Azad University, Tehran North Branch, Tehran, Iran
    Department of Industrial Engineering, Faculty of Engineering, Islamic Azad University, Tehran North Branch, Tehran, Iran

    شاپا
    2251-9904
    2423-3935
    URI
    https://dx.doi.org/10.22094/joie.2018.556347.1531
    http://www.qjie.ir/article_545828.html
    https://iranjournals.nlai.ir/handle/123456789/57978

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب