نمایش مختصر رکورد

dc.contributor.authorKhedmati, Majiden_US
dc.contributor.authorGhalebsaz-Jeddi, Babaken_US
dc.date.accessioned1399-07-08T19:03:03Zfa_IR
dc.date.accessioned2020-09-29T19:03:03Z
dc.date.available1399-07-08T19:03:03Zfa_IR
dc.date.available2020-09-29T19:03:03Z
dc.date.issued2018-07-01en_US
dc.date.issued1397-04-10fa_IR
dc.date.submitted2012-04-08en_US
dc.date.submitted1391-01-20fa_IR
dc.identifier.citationKhedmati, Majid, Ghalebsaz-Jeddi, Babak. (2018). Three Approaches to Time Series Forecasting of Petroleum Demand in OECD Countries. Journal of Optimization in Industrial Engineering, 11(2), 17-24. doi: 10.22094/joie.2018.538229en_US
dc.identifier.issn2251-9904
dc.identifier.issn2423-3935
dc.identifier.urihttps://dx.doi.org/10.22094/joie.2018.538229
dc.identifier.urihttp://www.qjie.ir/article_538229.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/57953
dc.description.abstractPetroleum (crude oil) is one of the most important resources of energy and its demand and consumption is growing while it is a non-renewable energy resource. Hence forecasting of its demand is necessary to plan appropriate strategies for managing future requirements. In this paper, three types of time series methods including univariate Seasonal ARIMA, Winters forecasting and Transfer Function-noise (TF) models are used to forecast the petroleum demand in OECD countries. To do this, we use the demand data from January 2001 to September 2010 and hold out data from October 2009 to September 2010 to test the sufficiency of the forecasts. For the TF model, OECD petroleum demand is modeled as a function of their GDP. We compare the root mean square error (RMSE) of the fitted models and check what percentage of the testing data is covered by the confidence intervals (C.I.). Accordingly we conclude that Transfer Function model demonstrates a better forecasting performance.en_US
dc.format.extent621
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherQIAUen_US
dc.relation.ispartofJournal of Optimization in Industrial Engineeringen_US
dc.relation.isversionofhttps://dx.doi.org/10.22094/joie.2018.538229
dc.subjectTime series forecastingen_US
dc.subjectOECD countriesen_US
dc.subjectPetroleum demanden_US
dc.titleThree Approaches to Time Series Forecasting of Petroleum Demand in OECD Countriesen_US
dc.typeTexten_US
dc.typeOriginal Manuscripten_US
dc.contributor.departmentDepartment of Industrial Engineering, Sharif University of Technology, Tehran, Iranen_US
dc.contributor.departmentDepartment of Industrial Engineering, Sharif University of Technology, Tehran, Iranen_US
dc.citation.volume11
dc.citation.issue2
dc.citation.spage17
dc.citation.epage24


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد