• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات فارسی
    • فصلنامه علمی- پژوهشی اطلاعات جغرافیایی « سپهر»
    • دوره 28, شماره 112
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات فارسی
    • فصلنامه علمی- پژوهشی اطلاعات جغرافیایی « سپهر»
    • دوره 28, شماره 112
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    کاربرد شبکه عصبی موجک با الگوریتم آموزش بهینه سازی انبوه ذرات در مدل سازی تغییرات زمانی محتوای الکترون کلی یون سپهر

    (ندگان)پدیدآور
    غفاری رزین, میر رضاوثوقی, بهزاد
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    819.9کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    مقاله پژوهشی
    زبان مدرک
    فارسی
    نمایش کامل رکورد
    چکیده
    در این مقاله از ترکیب شبکه‌های عصبی موجک (WNNs) به همراه الگوریتم آموزش بهینه‌سازی انبوه ذرات (PSO) جهت مدل‌سازی تغییرات زمانی محتوای الکترون کلی (TEC) یون‌سپهر در منطقه ایران استفاده شده است. چهار ترکیب از تعداد مشاهدات ورودی مختلف جهت تست روش، مورد ارزیابی قرار گرفته است. تعداد مشاهدات ورودی انتخاب شده جهت آموزش شبکه عصبی موجک با الگوریتم PSO به ترتیب 25، 20، 15 و 10 ایستگاه از شبکه مبنای ژئودینامیک ایران (IPGN) می‌باشند. در هر چهار حالت تعداد پنج ایستگاه با توزیع مناسب در گستره جغرافیایی ایران به عنوان ایستگاه‌های آزمون در نظر گرفته شده‌اند. شاخص‌های آماری خطای نسبی، خطای مطلق و ضریب همبستگی جهت ارزیابی مدل شبکه عصبی موجک مورد استفاده قرار گرفته است. نتایج حاصل از مدل پیشنهادی این مقاله با TEC حاصل از مشاهدات GPS به عنوان مرجع اصلی و مدل جهانی یون‌سپهر 2016 (IRI-2016) مقایسه شده است. میانگین خطای نسبی محاسبه شده در 5 ایستگاه آزمون برای شبکه عصبی موجک با 25 ایستگاه آموزش برابر با 43/13%، با 20 ایستگاه آموزش برابر با 73/13%، با 15 ایستگاه آموزش برابر با 05/15% و با 10 ایستگاه آموزش برابر با 17/28% تعیین شده است. همچنین میانگین مقادیر ضریب همبستگی محاسبه شده در پنج ایستگاه آزمون برای شبکه عصبی موجک با 25 ایستگاه آموزش برابر با 9768/0، با 20 ایستگاه آموزش برابر با 9545/0، با 15 ایستگاه آموزش برابر با 9376/0 و با 10 ایستگاه آموزش برابر با 7569/0 محاسبه شده است. نتایج این مقاله نشان می‌دهد که مدل شبکه عصبی موجک با الگوریتم آموزش PSO یک مدل قابل اعتماد جهت پیش‌بینی تغییرات زمانی یون‌سپهر در منطقه ایران است. این مدل می‌تواند یک جایگزین بسیار مطمئن برای مدل مرجع جهانی یون‌سپهر در ایران باشد.
    کلید واژگان
    TEC
    شبکه عصبی موجک
    الگوریتم GPS
    PSO

    شماره نشریه
    112
    تاریخ نشر
    2020-02-20
    1398-12-01
    ناشر
    سازمان جغرافیایی نیروهای مسلح
    National Geographical Organization
    سازمان پدید آورنده
    استادیار، گروه مهندسی نقشه برداری، دانشکده مهندسی علوم زمین، دانشگاه صنعتی اراک
    دانشیار، گروه مهندسی ژئودزی، دانشکده مهندسی نقشه برداری، دانشگاه صنعتی خواجه نصیرالدین طوسی

    شاپا
    2588-3860
    2588-3879
    URI
    https://dx.doi.org/10.22131/sepehr.2020.38603
    http://www.sepehr.org/article_38603.html
    https://iranjournals.nlai.ir/handle/123456789/56217

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب