| dc.contributor.author | Kashuri, Artion | en_US |
| dc.contributor.author | Liko, Rozana | en_US |
| dc.contributor.author | Du, Tingsong | en_US |
| dc.date.accessioned | 1399-07-08T18:34:10Z | fa_IR |
| dc.date.accessioned | 2020-09-29T18:34:10Z | |
| dc.date.available | 1399-07-08T18:34:10Z | fa_IR |
| dc.date.available | 2020-09-29T18:34:10Z | |
| dc.date.issued | 2018-01-01 | en_US |
| dc.date.issued | 1396-10-11 | fa_IR |
| dc.date.submitted | 2017-06-06 | en_US |
| dc.date.submitted | 1396-03-16 | fa_IR |
| dc.identifier.citation | Kashuri, Artion, Liko, Rozana, Du, Tingsong. (2018). Ostrowski Type Fractional Integral Operators for Generalized Beta $(r,g)$-Preinvex Functions. Khayyam Journal of Mathematics, 4(1), 39-58. doi: 10.22034/kjm.2017.54680 | en_US |
| dc.identifier.issn | 2423-4788 | |
| dc.identifier.uri | https://dx.doi.org/10.22034/kjm.2017.54680 | |
| dc.identifier.uri | http://www.kjm-math.org/article_54680.html | |
| dc.identifier.uri | https://iranjournals.nlai.ir/handle/123456789/47089 | |
| dc.description.abstract | In the present paper, the notion of generalized beta $(r,g)$-preinvex function is applied for establish some new generalizations of Ostrowski type inequalities via fractional integral operators. These results not only extend the results appeared in the literature [43] but also provide new estimates on these type. At the end, some applications to special means are given. | en_US |
| dc.format.extent | 429 | |
| dc.format.mimetype | application/pdf | |
| dc.language | English | |
| dc.language.iso | en_US | |
| dc.publisher | Department of Pure Mathematics, Ferdowsi University of Mashhad (in cooperation with the Center of Excellence in Analysis on Algebraic Structures and Tusi Mathematical Research Group) | en_US |
| dc.relation.ispartof | Khayyam Journal of Mathematics | en_US |
| dc.relation.isversionof | https://dx.doi.org/10.22034/kjm.2017.54680 | |
| dc.subject | Ostrowski type inequality | en_US |
| dc.subject | Hölder's inequality | en_US |
| dc.subject | Minkowski's inequality | en_US |
| dc.subject | power mean inequality | en_US |
| dc.subject | Riemann-Liouville fractional integral | en_US |
| dc.subject | fractional integral operator | en_US |
| dc.subject | $s$-convex function in the second sense | en_US |
| dc.subject | $m$-invex | en_US |
| dc.subject | 26 Real functions | en_US |
| dc.title | Ostrowski Type Fractional Integral Operators for Generalized Beta $(r,g)$-Preinvex Functions | en_US |
| dc.type | Text | en_US |
| dc.type | Original Article | en_US |
| dc.contributor.department | Department of Mathematics, Faculty of Technical Science, University "Ismail
Qemali", Vlora, Albania. | en_US |
| dc.contributor.department | Department of Mathematics, Faculty of Technical Science, University "Ismail
Qemali", Vlora, Albania. | en_US |
| dc.contributor.department | College of Science, China Three Gorges University, 443002, Yichang, P. R.
China. | en_US |
| dc.citation.volume | 4 | |
| dc.citation.issue | 1 | |
| dc.citation.spage | 39 | |
| dc.citation.epage | 58 | |
| nlai.contributor.orcid | 0000-0003-0115-3079 | |
| nlai.contributor.orcid | 0000-0003-2439-8538 | |