• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Web Research
    • Volume 2, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Web Research
    • Volume 2, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Sentiment Analysis User Comments On E-commerce Online Sale Websites

    (ندگان)پدیدآور
    forootan, faezehRabiei, Mohammad
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    975.4کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    E-commerce websites, based on their structural ontology, provides access to a wide range of options and the ability to deal directly with manufacturers to receive cheaper products and services as well as receiving comments and ideas of the users on the provided products and services. This is a valuable source of information, which includes a large number of user reviews. It is difficult to check the bulk of the comments published manually and non-automatically. Hence, sentiment analysis is an automated and relatively new field of study, which extracts and analyzes people's attitudes and emotions from the context of the comments. The primary objective of this research is to analyze the content of users' comments on online sale e-commerce websites of handcraft products. Sentiment analysis techniques were used at sentence level and machine learning approach.  First, the pre-processing steps and TF-IDF method were implemented on the comments text. Next, the comments text were classified into two groups of products and services comments using Support Vector Machine (SVM) algorithm with 99.2% accuracy. Finally, the sentiment of comments was classified into three groups of positive, negative and neutral using XGBoost algorithm. The results showed, 95.23% and 95.12% accuracies for classification of sentiments in comments about products and services, respectively.
    کلید واژگان
    Machine Learning
    Opinion mining
    Online Reviews
    Sentiment Classification
    TF-IDF
    Xgboost

    شماره نشریه
    2
    تاریخ نشر
    2019-12-01
    1398-09-10
    ناشر
    University of Science and Culture
    سازمان پدید آورنده
    M.Sc. in Information Technology Engineering, Ghiaseddin Jamshid Kashani University, Abyek, Iran
    Faculty Member of Electrical and Computer Department, Faculty of Computer, Eyvanekey University, Semnan, Iran

    شاپا
    2645-4335
    2645-4343
    URI
    https://dx.doi.org/10.22133/ijwr.2020.210555.1048
    http://ijwr.usc.ac.ir/article_110286.html
    https://iranjournals.nlai.ir/handle/123456789/45570

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب