Indicator of $S$-Hausdorff metric spaces and coupled strong fixed point theorems for pairwise contraction maps
(ندگان)پدیدآور
Khalilzadeh Ranjbar, GhorbanSamei, Mohammad Esmaelنوع مدرک
Textresearch paper
زبان مدرک
Englishچکیده
In the study of fixed points of an operator it is useful to consider a more general concept, namely coupled fixed point. Edit In this paper, by using notion partial metric, we introduce a metric space $S$-Hausdorff on the set of all close and bounded subset of $X$. Then the fixed point results of multivalued continuous and surjective mappings are presented. Furthermore, we give a positive result on the Nadler contraction theorem for multivalued mappings in this space. In the following, by expressing pseudo-Banach-type pairs of mappings, we study the conditions for the existence of a unique coupled strong fixed point in these mappings. Pseudo-Chatterjae mapping $F:X times Xto X$ satisfies in [dleft( F(x, y), F(u, v) right) leq k max left{ dleft( x, F(u, v)right), dleft( F(x, y), uright) right}, ] where $x, v in A$, $y, u in B$ and $0
کلید واژگان
Metric spacePartial $S$-Hausdorff
Coupled fixed point
Coupled strong fixed point
شماره نشریه
23تاریخ نشر
2020-04-011399-01-13
ناشر
Science and Research Branch, Islamic Azad Universityدانشگاه آزاد اسلامی واحد علوم و تحقیقات
سازمان پدید آورنده
Department of Mathematics, Faculty of Science, Bu-Ali Sina University, Hamedan, IranDepartment of Mathematics, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran




