• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of New Researches in Mathematics
    • Volume 5, Issue 20
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of New Researches in Mathematics
    • Volume 5, Issue 20
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multicast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach

    (ندگان)پدیدآور
    Kordafshari, M. S.Movaghar, A.meybodi, M.R.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    534.7کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    research paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionary algorithms and swarm intelligence are applied successfully to solve many problems in WSNs. Most important of these problems are data aggregation, energy-aware routing, duty cycle scheduling, security and localization. These problem are in form of distributed so distributed approaches are required to solve them. Reinforcement learning is one of the most widely used and most effective methods of computational intelligence. In this paper, we used the reinforcement learning to solve multicast Quality of Service (QoS) routing. The simulation results showed that reinforcement learning is a suitable approach to solve this problem. The algorithm is implemented easy, it has the great flexibility in topology changes and it leads to optimized results. Distributed reinforcement learning provides compatibility mechanisms that show the intelligence behavior in complicate and dynamic environment such as WSNs. Using reinforcement learning, sensors behave autonomously, independently and flexibly during topology and scenario changes.
    کلید واژگان
    lifeTime
    Topology-independent
    Q-Learning
    Reliability

    شماره نشریه
    20
    تاریخ نشر
    2019-11-01
    1398-08-10
    ناشر
    Science and Research Branch, Islamic Azad University
    دانشگاه آزاد اسلامی واحد علوم و تحقیقات
    سازمان پدید آورنده
    Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
    Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
    Computer Engineering and Information Technology Department, Amirkabir University of Technology, Tehran, Iran

    شاپا
    2588-588X
    URI
    http://jnrm.srbiau.ac.ir/article_14630.html
    https://iranjournals.nlai.ir/handle/123456789/453713

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب