• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Science and Technology Transactions of Electrical Engineering
    • Volume 39, E2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Science and Technology Transactions of Electrical Engineering
    • Volume 39, E2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A GENERALIZED KERNEL-BASED RANDOM K-SAMPLESETS METHOD FOR TRANSFER LEARNING

    (ندگان)پدیدآور
    TAHMORESNEZHAD, J.Hashemi, Sattar
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.025 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Transfer learning allows the knowledge transference from the source (training dataset) to target (test dataset) domain. Feature selection for transfer learning (f-MMD) is a simple and effective transfer learning method, which tackles the domain shift problem. f-MMD has good performance on small-sized datasets, but it suffers from two major issues: i) computational efficiency and predictive performance of f-MMD is challenged by the application domains with large number of examples and features, and ii) f-MMD considers the domain shift problem in fully unsupervised manner. In this paper, we propose a new approach to break down the large initial set of samples into a number of small-sized random subsets, called samplesets. Moreover, we present a feature weighting and instance clustering approach, which categorizes the original feature samplesets into the variant and invariant features. In domain shift problem, invariant features have a vital role in transferring knowledge across domains. The proposed method is called RAkET (RAndom k samplesETs), where k is a parameter that determines the size of the samplesets. Empirical evidence indicates that RAkET manages to improve substantially over f-MMD, especially in domains with large number of features and examples. We evaluate RAkET against other well-known transfer learning methods on synthetic and real world datasets.
    کلید واژگان
    Transfer learning
    unsupervised domain adaptation
    random samplesets
    feature weighting
    instance clustering

    شماره نشریه
    2
    تاریخ نشر
    2015-12-01
    1394-09-10
    ناشر
    Shiraz University
    سازمان پدید آورنده
    Electrical and Computer Engineering School, Shiraz University, Shiraz, I. R. of Iran
    Electrical and Computer Engineering School, Shiraz University, Shiraz, I. R. of Iran

    شاپا
    2228-6179
    URI
    https://dx.doi.org/10.22099/ijste.2015.3491
    http://ijste.shirazu.ac.ir/article_3491.html
    https://iranjournals.nlai.ir/handle/123456789/45270

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب