• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Soft Computing in Civil Engineering
    • Volume 2, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Soft Computing in Civil Engineering
    • Volume 2, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of Concrete Properties Using Multiple Linear Regression and Artificial Neural Network

    (ندگان)پدیدآور
    Charhate, ShrikantSubhedar, MansiAdsul, Nilam
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    714.6کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The selection of appropriate type and grade of concrete for a particular application is the critical step in any construction project. Workability & compressive strength are the two significant parameters that need special attention. The aim of this study is to predict the slump along with 7-days & 28-days compressive strength based on the data collected from various RMC plants. There are many studies reported in general to address this issue time to time over a long period. However, considering the worldwide use of a huge quantity of concrete for various infrastructure projects, there is a scope for the study that leads to most accurate estimate. Here, data from various concrete mixing plants and ongoing construction sites was collected for M20, M25, M30, M35, M40, M45, M50, M55, M60 and M70 grade of concrete. Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) models were built to predict slump as well as 7-days and 28-days compressive strength. A variety of experiments was carried out that suggests ANN performs better and yields more accurate prediction compared to MLR model for both slump & compressive strength.
    کلید واژگان
    Slump
    Compressive strength
    Multiple linear regression
    Artificial Neural Network
    Artificial Neural Networks

    شماره نشریه
    3
    تاریخ نشر
    2018-07-01
    1397-04-10
    ناشر
    Pouyan Press
    سازمان پدید آورنده
    Professor and Dean Department of Civil Engineering Pillai HOC College of Engineering and Technology, Rasayani
    Faculty of Technology
    Department of Civil Engineering Pillai HOC College of Engineering & Technology

    شاپا
    2588-2872
    URI
    https://dx.doi.org/10.22115/scce.2018.112140.1041
    http://www.jsoftcivil.com/article_59743.html
    https://iranjournals.nlai.ir/handle/123456789/44870

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب