نمایش مختصر رکورد

dc.contributor.authorHeidari, Alien_US
dc.contributor.authorHashempour, Masoumehen_US
dc.contributor.authorTavakoli, Davouden_US
dc.date.accessioned1399-07-08T18:28:22Zfa_IR
dc.date.accessioned2020-09-29T18:28:22Z
dc.date.available1399-07-08T18:28:22Zfa_IR
dc.date.available2020-09-29T18:28:22Z
dc.date.issued2017-07-01en_US
dc.date.issued1396-04-10fa_IR
dc.date.submitted2017-05-21en_US
dc.date.submitted1396-02-31fa_IR
dc.identifier.citationHeidari, Ali, Hashempour, Masoumeh, Tavakoli, Davoud. (2017). Using of Backpropagation Neural Network in Estimation of Compressive Strength of Waste Concrete. Journal of Soft Computing in Civil Engineering, 1(1), 54-64. doi: 10.22115/scce.2017.48040en_US
dc.identifier.issn2588-2872
dc.identifier.urihttps://dx.doi.org/10.22115/scce.2017.48040
dc.identifier.urihttp://www.jsoftcivil.com/article_48040.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/44843
dc.description.abstractWaste concrete is one of the most usable and economic kind of concrete which is used in many civil projects all around the world, and its importance is undeniable. Also, the explanation of constructional process and destruction of them cause the extensive growth of irreversible waste to the industry cycle, which can be as one of the main damaging factors to the economy. In this investigation, with using of constructional waste included concrete waste, brick, ceramic and tile and stone new aggregate was made, also it was used with different weight ratios of cement in mix design. The results of laboratory studies showed that, the using of ratio of sand to cement 1 and waste aggregate with 20% weight ratio (W20), replacing of normal aggregate, increased the 28 days compressive strength to the maximum stage 45.23 MPa. In the next stage, in order to develop the experimental results backpropagation neural network was used. This network with about 91% regression, 0.24 error, and 1.41 seconds, is a proper method in estimating of results.en_US
dc.format.extent1484
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherPouyan Pressen_US
dc.relation.ispartofJournal of Soft Computing in Civil Engineeringen_US
dc.relation.isversionofhttps://dx.doi.org/10.22115/scce.2017.48040
dc.subjectWaste materialsen_US
dc.subjectConcreteen_US
dc.subjectCompressive strengthen_US
dc.subjectBackpropagation neural networken_US
dc.subjectArtificial Neural Networksen_US
dc.titleUsing of Backpropagation Neural Network in Estimation of Compressive Strength of Waste Concreteen_US
dc.typeTexten_US
dc.typeRegular Articleen_US
dc.contributor.departmentAssociate Professor, Department of Civil Engineering, Shahrekord University, Shahrekord, Iranen_US
dc.contributor.departmentM.Sc. Student, Department of Civil Engineering, Shahrekord University, Shahrekord, Iranen_US
dc.contributor.departmentPh.D., Department of Civil Engineering, Shahid Rajaee Teacher Training University, Tehran, Iranen_US
dc.citation.volume1
dc.citation.issue1
dc.citation.spage54
dc.citation.epage64
nlai.contributor.orcid0000-0001-8229-4978


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد