• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Electrical and Computer Engineering Innovations (JECEI)
    • Volume 8, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Electrical and Computer Engineering Innovations (JECEI)
    • Volume 8, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stock Price Prediction using Machine Learning and Swarm Intelligence

    (ندگان)پدیدآور
    Behravan, I.Razavi, S. M.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    969.8کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this paper, a novel machine learning approach, which works in two phases, is introduced to predict the price of a stock in the next day based on the information extracted from the past 26 days. In the first phase of the method, an automatic clustering algorithm clusters the data points into different clusters, and in the second phase a hybrid regression model, which is a combination of particle swarm optimization and support vector regression, is trained for each cluster. In this hybrid method, particle swarm optimization algorithm is used for parameter tuning and feature selection. Results: The accuracy of the proposed method has been measured by 5 companies' datasets, which are active in the Tehran Stock Exchange market, through 5 different metrics. On average, the proposed method has shown 82.6% accuracy in predicting stock price in 1-day ahead. Conclusion: The achieved results demonstrate the capability of the method in detecting the sudden jumps in the price of a stock.
    کلید واژگان
    Tehran Stock Exchange market
    Automatic clustering
    Feature selection
    Particle swarm optimization
    Support Vector Regression
    Data mining
    Optimization
    Swarm intelligence

    شماره نشریه
    1
    تاریخ نشر
    2020-01-01
    1398-10-11
    ناشر
    Shahid Rajaee Teacher Training University
    سازمان پدید آورنده
    Post-doctoral researcher, Department of Electrical Engineering, University of Birjand
    Department of Electrical and Computer Engineering,University of Birjand, Birjand, Iran

    شاپا
    2322-3952
    2345-3044
    URI
    https://dx.doi.org/10.22061/jecei.2020.6898.346
    http://jecei.sru.ac.ir/article_1421.html
    https://iranjournals.nlai.ir/handle/123456789/437512

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب