• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Nonlinear Analysis and Applications
    • Volume 11, Special Issue
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Nonlinear Analysis and Applications
    • Volume 11, Special Issue
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Online target tracking via deep convolutional network approach

    (ندگان)پدیدآور
    Nazarloo, MahbubehYadollahzadeh Tabari, MeisamMotameni, Homayoon
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    224.6کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    There is a useful approach for multiple objects tracking easy and efficient that is called simple online and real time tracking(SORT). SORT algorithm performance can be improved by adding visual information. This can reduce the number of identity switches. Because the main framework of the algorithm has a lot of computational complexity, a deep network has been used that is offline on a large data set of trained pedestrians. the focus of this article is on the architecture of this deep network in order to extract more and higher quality visual information that can help the object recognition algorithm. The paper also used a particle filter instead of a Kalman filter to improve data association performance. We tested our proposed method on two standard datasets, MOT16 and MOT17, and compared its performance with other available methods. The results show that the tracking accuracy(52.2) on the MOT17 dataset is improved compared to the existing methods in this field. Experimental evaluation shows that our proposed architecture improves the number of identity switches and ideally tracks goals in complex environments.
    کلید واژگان
    Computer vision
    Multiple Object Tracking
    Detection
    Data Association

    تاریخ نشر
    2020-04-01
    1399-01-13
    ناشر
    Semnan University
    سازمان پدید آورنده
    Department of Computer Engineering, Babol Branch, Islamic Azad University,Babol, Ira
    Department of Computer Engineering,sari Branch, Islamic Azad University, Babol, Iran
    Department of Computer Engineering,sari Branch, Islamic Azad University, Sari, Iran

    شاپا
    2008-6822
    URI
    https://dx.doi.org/10.22075/ijnaa.2020.4630
    https://ijnaa.semnan.ac.ir/article_4630.html
    https://iranjournals.nlai.ir/handle/123456789/436614

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب