• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Advanced Sport Technology
    • Volume 4, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Advanced Sport Technology
    • Volume 4, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Framework to Identify and Count Popular Exercises Using Smartphone Sensors Based on Machine learning

    (ندگان)پدیدآور
    Gandomkar, MuhammadSarang, RezaGandomkar, Ziba
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    893.9کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original research papers
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Smartphones have wide range of sensors such as gyroscopes or inertial sensors, which can be used for recognizing and tracking exercises. A framework, called TrainingPal, was proposed to automatically identify five types of cardio exercises and five types of resistance exercises. Included exercises were running, walking, rowing, using elliptical machine, and jumping jack. Sit-up, bench dip, push-up, squat, and lunge were included as popular resistance exercises. In addition to recognition of each exercises, the proposed framework was able to count number of repetitions of each exercise. To train and test the proposed framework, data was collected from Samsung Galaxy S7 edge, which was attached to the outer side of arm approximately 10 to 12 cm below the shoulder. To avoid overfitting, we used leave-one-subject-out cross validation. An overall accuracy of 91.71% was achieved in identifying different types of exercises. The accuracy ranged from 100% for push-ups to 60.33% for bench dips. The accuracy of the proposed framework in counting the exercises was 90%. The results suggested that the proposed framework can be used for identifying and tracking of the included exercises. The framework can be extended to other wearable devices.
    کلید واژگان
    Exercise recognition
    Exercise tracking
    Inertial sensors
    Smartphone

    شماره نشریه
    2
    تاریخ نشر
    2020-07-01
    1399-04-11
    ناشر
    University of Mohaghegh Ardabili
    سازمان پدید آورنده
    Department of Sports Engineering, Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
    Department of Sports Engineering, Faculty of Engineering, Science and Research Branch, IAU, Tehran
    Faculty of Medicine and Health, University of Sydney, Sydney, Australia

    شاپا
    2538-5259
    URI
    http://jast.uma.ac.ir/article_950.html
    https://iranjournals.nlai.ir/handle/123456789/436430

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب