| dc.contributor.author | Hasani, Marzieh | en_US |
| dc.date.accessioned | 1399-07-08T18:25:13Z | fa_IR |
| dc.date.accessioned | 2020-09-29T18:25:13Z | |
| dc.date.available | 1399-07-08T18:25:13Z | fa_IR |
| dc.date.available | 2020-09-29T18:25:13Z | |
| dc.date.issued | 2017-12-01 | en_US |
| dc.date.issued | 1396-09-10 | fa_IR |
| dc.date.submitted | 2017-05-19 | en_US |
| dc.date.submitted | 1396-02-29 | fa_IR |
| dc.identifier.citation | Hasani, Marzieh. (2017). Study of inverse sum indeg index. Journal of Mathematical Nanoscience, 7(2), 103-109. doi: 10.22061/jmns.2017.748 | en_US |
| dc.identifier.issn | 2538-2314 | |
| dc.identifier.uri | https://dx.doi.org/10.22061/jmns.2017.748 | |
| dc.identifier.uri | http://jmathnano.sru.ac.ir/article_748.html | |
| dc.identifier.uri | https://iranjournals.nlai.ir/handle/123456789/43606 | |
| dc.description.abstract | Let $MG(i,n)$ $(1leq i leq 3)$ denote to the class of all $n$-vertex molecular graphs with minimum degree $ i$. The inverse sum indeg index of a graph is defined as $ISI=sum_{uvin E(G)} d_ud_v/(d_u+d_v)$, where $ d_{u}$ denotes to the degree of vertex $ u$. In this paper, we propose some extremal molecular graphs with the minimum and the maximum value of inverse sum indeg index in $MG(i,n)$. | en_US |
| dc.format.extent | 163 | |
| dc.format.mimetype | application/pdf | |
| dc.language | English | |
| dc.language.iso | en_US | |
| dc.publisher | Shahid Rajaee Teacher Training University | en_US |
| dc.relation.ispartof | Journal of Mathematical Nanoscience | en_US |
| dc.relation.isversionof | https://dx.doi.org/10.22061/jmns.2017.748 | |
| dc.title | Study of inverse sum indeg index | en_US |
| dc.type | Text | en_US |
| dc.type | Note | en_US |
| dc.contributor.department | Departmnet of Mathematics, SRTT University | en_US |
| dc.citation.volume | 7 | |
| dc.citation.issue | 2 | |
| dc.citation.spage | 103 | |
| dc.citation.epage | 109 | |