• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Industrial Engineering, International
    • Volume 14, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Industrial Engineering, International
    • Volume 14, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Construction cost estimation of spherical storage tanks: artificial neural networks and hybrid regression—GA algorithms

    (ندگان)پدیدآور
    Arabzadeh, Vida. A. Niaki, S. TArabzadeh, Vahid
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.660 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    One of the most important processes in the early stages of construction projects is to estimate the cost involved. This process involves a wide range of uncertainties, which make it a challenging task. Because of unknown issues, using the experience of the experts or looking for similar cases are the conventional methods to deal with cost estimation. The current study presents data-driven methods for cost estimation based on the application of artificial neural network (ANN) and regression models. The learning algorithms of the ANN are the Levenberg–Marquardt and the Bayesian regulated. Moreover, regression models are hybridized with a genetic algorithm to obtain better estimates of the coefficients. The methods are applied in a real case, where the input parameters of the models are assigned based on the key issues involved in a spherical tank construction. The results reveal that while a high correlation between the estimated cost and the real cost exists; both ANNs could perform better than the hybridized regression models. In addition, the ANN with the Levenberg–Marquardt learning algorithm (LMNN) obtains a better estimation than the ANN with the Bayesian-regulated learning algorithm (BRNN). The correlation between real data and estimated values is over 90%, while the mean square error is achieved around 0.4. The proposed LMNN model can be effective to reduce uncertainty and complexity in the early stages of the construction project.
    کلید واژگان
    Cost estimation Manufacturing project
    Spherical storage tanks Neural networks Genetic
    algorithm Regression method

    شماره نشریه
    4
    تاریخ نشر
    2018-12-01
    1397-09-10
    ناشر
    Islamic Azad University, South Tehran Branch
    سازمان پدید آورنده
    Department of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
    Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran
    HVAC Technology, Department of Mechanical Engineering, School of Engineering, Aalto University, 14400, 00076, Aalto, Finland

    شاپا
    1735-5702
    2251-712X
    URI
    http://jiei.azad.ac.ir/article_676813.html
    https://iranjournals.nlai.ir/handle/123456789/434609

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب