• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Industrial Engineering, International
    • Volume 14, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Industrial Engineering, International
    • Volume 14, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multi-period project portfolio selection under risk considerations and stochastic income

    (ندگان)پدیدآور
    Tofighian, Ali AsgharMoezzi, HamidKhakzar Barfuei, MortezaShafiee, Mahmood
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.739 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    This paper deals with multi-period project portfolio selection problem. In this problem, the available budget is invested on the best portfolio of projects in each period such that the net profit is maximized. We also consider more realistic assumptions to cover wider range of applications than those reported in previous studies. A novel mathematical model is presented to solve the problem, considering risks, stochastic incomes, and possibility of investing extra budget in each time period. Due to the complexity of the problem, an effective meta-heuristic method hybridized with a local search procedure is presented to solve the problem. The algorithm is based on genetic algorithm (GA), which is a prominent method to solve this type of problems. The GA is enhanced by a new solution representation and well selected operators. It also is hybridized with a local search mechanism to gain better solution in shorter time. The performance of the proposed algorithm is then compared with well-known algorithms, like basic genetic algorithm (GA), particle swarm optimization (PSO), and electromagnetism-like algorithm (EM-like) by means of some prominent indicators. The computation results show the superiority of the proposed algorithm in terms of accuracy, robustness and computation time. At last, the proposed algorithm is wisely combined with PSO to improve the computing time considerably.
    کلید واژگان
    Portfolio selection . Risk analysis Investment . Genetic algorithm . Particle swarm optimization . Project interdependency

    شماره نشریه
    3
    تاریخ نشر
    2018-09-01
    1397-06-10
    ناشر
    Islamic Azad University, South Tehran Branch
    سازمان پدید آورنده
    Industrial Engineering Department, Faculty of Engineering, Kharazmi University, Tehran, Iran
    Industrial Engineering Department, Faculty of Engineering, University of Science and Culture, Tehran, Iran
    Industrial Engineering Research Group, Technology Development Institute, ACECR, Tehran, Iran
    Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK

    شاپا
    1735-5702
    2251-712X
    URI
    http://jiei.azad.ac.ir/article_676789.html
    https://iranjournals.nlai.ir/handle/123456789/434597

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب