• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Industrial Engineering, International
    • Volume 14, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Industrial Engineering, International
    • Volume 14, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improved teaching–learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems

    (ندگان)پدیدآور
    Buddala, RavitejaSankar Mahapatra, Siba
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    956.7کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having ‘g' operations is performed on ‘g' operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem becomes a flexible flow shop problem (FFSP). FFSP which contains all the complexities involved in a simple flow shop and parallel machine scheduling problems is a well-known NP-hard (Non-deterministic polynomial time) problem. Owing to high computational complexity involved in solving these problems, it is not always possible to obtain an optimal solution in a reasonable computation time. To obtain near-optimal solutions in a reasonable computation time, a large variety of meta-heuristics have been proposed in the past. However, tuning algorithm-specific parameters for solving FFSP is rather tricky and time consuming. To address this limitation, teaching–learning-based optimization (TLBO) and JAYA algorithm are chosen for the study because these are not only recent meta-heuristics but they do not require tuning of algorithm-specific parameters. Although these algorithms seem to be elegant, they lose solution diversity after few iterations and get trapped at the local optima. To alleviate such drawback, a new local search procedure is proposed in this paper to improve the solution quality. Further, mutation strategy (inspired from genetic algorithm) is incorporated in the basic algorithm to maintain solution diversity in the population. Computational experiments have been conducted on standard benchmark problems to calculate makespan and computational time. It is found that the rate of convergence of TLBO is superior to JAYA. From the results, it is found that TLBO and JAYA outperform many algorithms reported in the literature and can be treated as efficient methods for solving the FFSP.
    کلید واژگان
    Flexible flow shop . JAYA algorithm . Makespan. Meta-heuristics. Teaching
    learning-based optimization

    شماره نشریه
    3
    تاریخ نشر
    2018-09-01
    1397-06-10
    ناشر
    Islamic Azad University, South Tehran Branch
    سازمان پدید آورنده
    Department of Mechanical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
    Department of Mechanical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India

    شاپا
    1735-5702
    2251-712X
    URI
    http://jiei.azad.ac.ir/article_676788.html
    https://iranjournals.nlai.ir/handle/123456789/434596

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب