• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Industrial Engineering, International
    • Volume 11, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Industrial Engineering, International
    • Volume 11, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Step change point estimation in the multivariate-attribute process variability using artificial neural networks and maximum likelihood estimation

    (ندگان)پدیدآور
    Maleki, Mohammad RezaAmiri, AmirhosseinMousavi, Seyed Meysam
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    582.7کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    In some statistical process control applications, the combination of both variable and attribute quality characteristics which are correlated represents the quality of the product or the process. In such processes, identification the time of manifesting the out-of-control states can help the quality engineers to eliminate the assignable causes through proper corrective actions. In this paper, first we use an artificial neural network (ANN)-based method in the literature for detecting the variance shifts as well as diagnosing the sources of variation in the multivariate-attribute processes. Then, based on the quality characteristics responsible for the out-of-control state, we propose a modular model based on the ANN for estimating the time of step change in the multivariate-attribute process variability. We also compare the performance of the ANN-based estimator with the estimator based on maximum likelihood method (MLE). A numerical example based on simulation study is used to evaluate the performance of the estimators in terms of the accuracy and precision criteria. The results of the simulation study show that the proposed ANN-based estimator outperforms the MLE estimator under different out-of-control scenarios where different shift magnitudes in the covariance matrix of multivariate-attribute quality characteristics are manifested.
    کلید واژگان
    Change point estimation . Covariance matrix . Multilayered perceptron neural network . Multivariateattribute processes . Phase II

    شماره نشریه
    4
    تاریخ نشر
    2015-12-01
    1394-09-10
    ناشر
    Islamic Azad University, South Tehran Branch
    سازمان پدید آورنده
    Department of Industrial Engineering, Faculty of Engineering, Shahed University, Tehran, Iran
    Department of Industrial Engineering, Faculty of Engineering, Shahed University, Tehran, Iran
    Department of Industrial Engineering, Faculty of Engineering, Shahed University, Tehran, Iran

    شاپا
    1735-5702
    2251-712X
    URI
    http://jiei.azad.ac.ir/article_676530.html
    https://iranjournals.nlai.ir/handle/123456789/434441

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب