• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Industrial Engineering, International
    • Volume 13, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Industrial Engineering, International
    • Volume 13, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of an evolutionary fuzzy expert system for estimating future behavior of stock price

    (ندگان)پدیدآور
    Goodarzi, AzamAmiri, AmirhosseinAsadzadeh, ShervinMehmanpazir, FarhadAsadi, Shahrokh
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    2.835 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The stock market has always been an attractive area for researchers since no method has been found yet to predict the stock price behavior precisely. Due to its high rate of uncertainty and volatility, it carries a higher risk than any other investment area, thus the stock price behavior is difficult to simulation. This paper presents a “data mining-based evolutionary fuzzy expert system" (DEFES) approach to estimate the behavior of stock price. This tool is developed in seven-stage architecture. Data mining is used in three stages to reduce the complexity of the whole data space. The first stage, noise filtering, is used to make our raw data clean and smooth. Variable selection is second stage; we use stepwise regression analysis to choose the key variables been considered in the model. In the third stage, K-means is used to divide the data into sub-populations to decrease the effects of noise and rebate complexity of the patterns. At next stage, extraction of Mamdani type fuzzy rule-based system will be carried out for each cluster by means of genetic algorithm and evolutionary strategy. In the fifth stage, we use binary genetic algorithm to rule filtering to remove the redundant rules in order to solve over learning phenomenon. In the sixth stage, we utilize the genetic tuning process to slightly adjust the shape of the membership functions. Last stage is the testing performance of tool and adjusts parameters. This is the first study on using an approximate fuzzy rule base system and evolutionary strategy with the ability of extracting the whole knowledge base of fuzzy expert system for stock price forecasting problems. The superiority and applicability of DEFES are shown for International Business Machines Corporation and compared the outcome with the results of the other methods. Results with MAPE metric and Wilcoxon signed ranks test indicate that DEFES provides more accuracy and outperforms all previous methods, so it can be considered as a superior tool for stock price forecasting problems.
    کلید واژگان
    Data mining . Fuzzy expert system . Stock price forecasting . Noise filtering . Genetic algorithm . Evolutionary strategy

    شماره نشریه
    1
    تاریخ نشر
    2017-03-01
    1395-12-11
    ناشر
    Islamic Azad University, South Tehran Branch
    سازمان پدید آورنده
    Department of Industrial Engineering, Faculty of Engineering, Shahed University, Tehran, Iran
    Department of Industrial Engineering, Faculty of Engineering, Shahed University, Tehran, Iran
    Department of Industrial Engineering, Islamic Azad University, North Tehran Branch, Tehran, Iran
    Department of Industrial Engineering, South-Tehran Branch, Islamic Azad University, Tehran, Iran
    Faculty of Engineering, Farabi Campus, University of Tehran, Tehran, Iran

    شاپا
    1735-5702
    2251-712X
    URI
    http://jiei.azad.ac.ir/article_676656.html
    https://iranjournals.nlai.ir/handle/123456789/434337

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب