On the super domination number of graphs
(ندگان)پدیدآور
Rodriguez-Velazquez, Juan AlbertoKlein, DouglasYi, Eunjeongنوع مدرک
TextOriginal paper
زبان مدرک
Englishچکیده
The open neighborhood of a vertex $v$ of a graph $G$ is the set $N(v)$ consisting of all vertices adjacent to $v$ in $G$. For $Dsubseteq V(G)$, we define $overline{D}=V(G)setminus D$. A set $Dsubseteq V(G)$ is called a super dominating set of $G$ if for every vertex $uin overline{D}$, there exists $vin D$ such that $N(v)cap overline{D}={u}$. The super domination number of $G$ is the minimum cardinality among all super dominating sets of $G$. In this paper, we obtain closed formulas and tight bounds for the super domination number of $G$ in terms of several invariants of $G$. We also obtain results on the super domination number of corona product graphs and Cartesian product graphs.
کلید واژگان
Super domination numberDomination number
Cartesian product
Corona product
Graph theory
شماره نشریه
2تاریخ نشر
2020-12-011399-09-11
ناشر
Azarbaijan Shahid Madani Universityسازمان پدید آورنده
Universitat Rovira i VirgiliTexas A&M University
Texas A&M University
شاپا
2538-21282538-2136




