• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • ADMT Journal
    • Volume 11, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • ADMT Journal
    • Volume 11, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Application of the Relevance Vector Machine for Modeling Surface Roughness in WEDM Process for Ti-6Al-4V Titanium Alloy

    (ندگان)پدیدآور
    Foorginejad, AbolfazlMollayi, NaderTaheri, Morteza
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    903.8کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Cutting the Titanium alloys is a complicated task which cannot be performed by traditional methods and modern machining processes, such as Wire electro-discharge machining (WEDM) process which are mainly used for this purpose. As a result of the high price of the Ti-6Al-4V alloy, proper tuning of the input parameters so as to attain a desired value of the surface roughness is an important issue in this process. For this purpose, it is necessary to develop a predictive model of surface roughness based on the input process parameters. In this paper, The Taguchi method was used for the design of the experiment. According to their effectiveness, the input parameters are pulse-on time, pulse-off time, wire speed, current intensity, and voltage; and the output parameter is surface roughness. However, a predictive model cannot be defined by a simple mathematical expression as a result of the complicated and coupled multivariable effect of the process parameters on the surface roughness in this process. In this study, application of the relevance vector machine as a powerful machine learning algorithm for modeling and prediction of surface roughness in wire electro-discharge machining for Ti-6Al-4V titanium alloy has been investigated. The predicting result of model based on the root means square error (RMSE) and the coefficient of determination (R2) statistical indices, prove that this approach provides reasonable accuracy in this application.
    کلید واژگان
    Modeling
    Relevance Vector Machine
    Ti-6Al-4V Alloy
    WEDM
    advanced manufacturing technology

    شماره نشریه
    4
    تاریخ نشر
    2018-12-01
    1397-09-10
    ناشر
    Islamic Azad University Majlesi Branch
    سازمان پدید آورنده
    Department of Mechanical Engineering, Birjand University of Technology, Iran
    Department of Computer engineering and Information Technology, Birjand University of Technology, Iran
    Department of Mechanical Engineering, University of Birjand, Iran

    شاپا
    2252-0406
    2383-4447
    URI
    http://admt.iaumajlesi.ac.ir/article_668311.html
    https://iranjournals.nlai.ir/handle/123456789/429095

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب