• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • ADMT Journal
    • Volume 8, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • ADMT Journal
    • Volume 8, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of Residual Stresses by Radial Basis Neural Network in HSLA-65 Steel Weldments

    (ندگان)پدیدآور
    Heidari, M.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    402.9کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    This paper investigates the residual stress fields in the vicinity of weld bead in HSLA-65 steel weldments using a neural network. This study consists of two cases: (i) the experimental analysis was carried out on the measurement of residual stresses by XRD technique. Many different specimens that were subjected to different conditions were studied. The values and distributions of residual stresses occurring in welding of HSLA-65 plate under various conditions were determined. (ii) The mathematical modeling analysis has proposed the use of radial basis (RB) NN to determine the residual stresses based on the welding conditions. The input of RBNN are welding current, welding voltage, welding heat input, travel speed of welding, wire feed speed and distance from weld. The best fitting training data set was obtained with 18 neurons in the hidden layer, which made it possible to predict residual stresses with accuracy of at least as good as the experimental error, over the whole experimental range. After training, it was found that the regression values (R2) are 0.999664 and 0.999322 for newrbe and newrb functions respectively. Similarly, these values for testing data are 0.999425 and 0.998505, respectively. Based on the verification errors, it was shown that the radial basis function of neural network with newrbe function is superior in this particular case, and has the average error of 7.70% in predicting the residual stresses in HSLA-65. This method is conceptually straightforward, and it is also applicable to other type of welding for practical purposes.
    کلید واژگان
    Artificial Neural Network
    HSLA-6
    Residual stress
    Radial Basis Function

    شماره نشریه
    2
    تاریخ نشر
    2015-06-01
    1394-03-11
    ناشر
    Islamic Azad University Majlesi Branch
    سازمان پدید آورنده
    Department of Mechanical Engineering, Aligudarz Branch, Islamic Azad University, Aligudarz, Iran

    شاپا
    2252-0406
    2383-4447
    URI
    http://admt.iaumajlesi.ac.ir/article_534927.html
    https://iranjournals.nlai.ir/handle/123456789/428960

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب