• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Frontiers in Chemical Research
    • Volume 1, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Frontiers in Chemical Research
    • Volume 1, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    QSAR Modeling of Some Derivatives of Thiazolidinedione With Antimalarial Properties

    (ندگان)پدیدآور
    Asadpour, SaeidJazayeri Farsani, SajjadGhanavati Nasab, ShimaSemnani, Abolfazl
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.657 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Malaria is a serious human health threat that affects the lives of millions of people annually. To this end, the Quantitative structure–activity relationship (QSAR) of 31 thiazolidinedione derivatives were used to predict anti-malarial activity. Multiple linear regression (MLR) model and artificial neural network (ANN) are used for modeling. The best results were obtained for thiazolidinedione derivatives with 5 descriptors. The obtained results indicated that the MLR implemented for thiazolidinedione derivatives with parameters: R2: 0.90, R2adj: 0.88, Q2: 0.89, and RMSE: 2.06. Also, the ANN was used in which the correlation coefficients of the three groups of train, validation, test and total were 0.94, 0.98, 0.99, and 0.95, respectively. Based on the results, a comparison of the quality of the models show that the ANN model has a significantly better predictive capability. ANN establishes a satisfactory relationship between the molecular descriptors and the activity of the studied compounds.
    کلید واژگان
    Malaria
    Thiazolidinedione
    Quantitative structure activity relationship (QSAR)
    Multiple Linear Regression (MLR)
    artificial neural network (ANN)
    Computational chemistry / neural networks / Fuzzy logic / other computations

    شماره نشریه
    1
    تاریخ نشر
    2019-09-01
    1398-06-10
    ناشر
    Ilam University
    سازمان پدید آورنده
    Department of Chemistry, Faculty of Sciences, Shahrekord University, P. O. Box 115, Shahrekord, Iran
    Department of Chemistry, Faculty of Sciences, Shahrekord University, P. O. Box 115, Shahrekord, Iran
    Department of Chemistry, Faculty of Sciences, Shahrekord University, P. O. Box 115, Shahrekord, Iran
    Department of Chemistry, Faculty of Sciences, Shahrekord University, P. O. Box 115, Shahrekord, Iran

    URI
    https://dx.doi.org/10.22034/fcr.2019.36419
    http://fcr.ilam.ac.ir/article_36419.html
    https://iranjournals.nlai.ir/handle/123456789/41715

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب