SIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM
(ندگان)پدیدآور
Taghvaee, FatemehFath-Tabar, Gholam Hosseinنوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$ and $A(G)$ the adjacency matrix of $G$. The signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ are the eigenvalues of the signless Laplacian matrix of $G$. In this paper we first compute the $k-$th signless Laplacian spectral moments of a graph for small $k$ and then we order some graphs with respect to the signless Laplacian spectral moments.
کلید واژگان
Spectral moments sequencesignless Laplacian
generalized Petersen graph
T−order
شماره نشریه
2تاریخ نشر
2014-11-011393-08-10
ناشر
Yazd Universityسازمان پدید آورنده
University of KashanUniversity of Kashan
شاپا
2382-97612423-3447




