A class of well-covered and vertex decomposable graphs arising from rings
(ندگان)پدیدآور
Vafaei, MortezaTehranian, AbolfazlNikandish, Rezaنوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
Let $ mathbb {Z}_{n} $ be the ring of integers modulo $ n $. The unitary Cayley graph of $ mathbb {Z}_{n} $ is defined as the graph $ G( mathbb {Z}_{n} ) $ with the vertex set $ mathbb {Z}_{n} $ and two distinct vertices $a,b$ are adjacent if and only if $a-bin Uleft( mathbb {Z}_{n}right)$, where $ Uleft( mathbb {Z}_{n}right) $ is the set of units of $ mathbb {Z}_{n} $. Let $Gamma ( mathbb {Z}_{n} ) $ be the complement of $ G( mathbb {Z}_{n} ) $. In this paper, we determine the independence number of $ Gamma ( mathbb {Z}_{n} ) $. Also it is proved that $ Gamma ( mathbb {Z}_{n} ) $ is well-covered. Among other things, we provide condition under which $ Gamma ( mathbb {Z}_{n} ) $ is vertex decomposable.
کلید واژگان
Independence numberComplete graph
Well-covered
Clique number
Vertex decomposable
شماره نشریه
2تاریخ نشر
2020-04-011399-01-13
ناشر
Yazd Universityسازمان پدید آورنده
Department of Mathematics, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran.Department of Mathematics, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran.
Department of Mathematics, Jundi-Shapur University of Technology, Dezful, Iran.
شاپا
2382-97612423-3447




