Local cohomology modules and Cousin complexes
(ندگان)پدیدآور
Vahidi, AlirezaHassani, FaisalSenshenas, Maryamنوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
Let $R$ be a commutative Noetherian ring with non-zero identity, $mathfrak{a}$ an ideal of $R$, $X$ an arbitrary $R$--module, $mathcal{F}$ a filtration of $operatorname{Spec}(R)$ which admits $X$, and $s, s', t, t'$ non-negative integers such that $s+ t= s'+ t'$. In this paper, we study the membership of $R$--modules $operatorname{H}^{s}_mathfrak{a}(operatorname{H}^{t- 1}(operatorname{C}_R(mathcal{F}, X)))$ and $operatorname{H}^{s'- 1}(operatorname{H}^{t'}_mathfrak{a}(operatorname{C}_R(mathcal{F}, X)))$ in Serre subcategories of the category of $R$--modules and find some sufficient conditions which ensure the existence of an isomorphism between them, where $operatorname{C}_R(mathcal{F},X)$ is the Cousin complex for $X$ with respect to $mathcal{F}$. As applications, we give some new facts and represent some older facts about the local cohomology modules and the Cousin complexes.
کلید واژگان
Cousin complexeslocal cohomology modules
Serre subcategories
شماره نشریه
2تاریخ نشر
2019-11-011398-08-10
ناشر
Yazd Universityسازمان پدید آورنده
Department of Mathematics, Payame Noor University (PNU), P.O.BOX, 19395-4697, Tehran, IranDepartment of Mathematics, Payame Noor University (PNU), P.O.BOX, 19395-4697, Tehran, Iran
Department of Mathematics, Payame Noor University (PNU), P.O.BOX, 19395-4697, Tehran, Iran
شاپا
2382-97612423-3447




