نمایش مختصر رکورد

dc.contributor.authorMohamadian, Rostamen_US
dc.date.accessioned1399-07-09T12:10:20Zfa_IR
dc.date.accessioned2020-09-30T12:10:21Z
dc.date.available1399-07-09T12:10:20Zfa_IR
dc.date.available2020-09-30T12:10:21Z
dc.date.issued2015-11-01en_US
dc.date.issued1394-08-10fa_IR
dc.date.submitted2016-03-07en_US
dc.date.submitted1394-12-17fa_IR
dc.identifier.citationMohamadian, Rostam. (2015). $z^circ$-filters and related ideals in $C(X)$. Algebraic Structures and Their Applications, 2(2), 57-66.en_US
dc.identifier.issn2382-9761
dc.identifier.issn2423-3447
dc.identifier.urihttp://as.yazd.ac.ir/article_807.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/416736
dc.description.abstractIn this article we introduce the concept of $z^circ$-filter on a topological space $X$. We study and investigate the behavior of $z^circ$-filters and compare them  with corresponding ideals, namely, $z^circ$-ideals of $C(X)$,  the ring of real-valued continuous functions on a completely regular Hausdorff space $X$. It is observed that $X$ is a compact space if and only if every $z^circ$-filter is ci-fixed. Finally, by using  $z^circ$-ultrafilters, we prove that any arbitrary product of i-compact spaces is i-compact.en_US
dc.format.extent388
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherYazd Universityen_US
dc.relation.ispartofAlgebraic Structures and Their Applicationsen_US
dc.subject$z^circ$-filteren_US
dc.subjectprime $z^circ$-filteren_US
dc.subjectci-free $z^circ$-filteren_US
dc.subjecti-free $z^circ$-filteren_US
dc.subject$z^circ$-ultrafilteren_US
dc.subjecti-compacten_US
dc.title$z^circ$-filters and related ideals in $C(X)$en_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentShahid Chamran University of Ahvazen_US
dc.citation.volume2
dc.citation.issue2
dc.citation.spage57
dc.citation.epage66


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد