COSPECTRALITY MEASURES OF GRAPHS WITH AT MOST SIX VERTICES
(ندگان)پدیدآور
Abdollahi, A.Janbaz, Sh.Oboudi, M.R.نوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
Cospectrality of two graphs measures the differences between the ordered spectrum of these graphs in various ways. Actually, the origin of this concept came back to Richard Brualdi's problems that are proposed in cite{braldi}: Let $G_n$ and $G'_n$ be two nonisomorphic simple graphs on $n$ vertices with spectra$$lambda_1 geq lambda_2 geq cdots geq lambda_n ;;;text{and};;; lambda'_1 geq lambda'_2 geq cdots geq lambda'_n,$$ respectively. Define the distance between the spectra of $G_n$ and $G'_n$ as$$lambda(G_n,G'_n) =sum_{i=1}^n (lambda_i-lambda'_i)^2 ;;; big(text{or use}; sum_{i=1}^n|lambda_i-lambda'_i|big).$$Define the cospectrality of $G_n$ by$text{cs}(G_n) = min{lambda(G_n,G'_n) ;:; G'_n ;;text{not isomorphic to} ; G_n}.$Let $text{cs}_n = max{text{cs}(G_n) ;:; G_n ;;text{a graph on}; n ;text{vertices}}.$Investigation of $text{cs}(G_n)$ for special classes of graphs and finding a good upper bound on $text{cs}_n$ are two main questions in thissubject.In this paper, we briefly give some important results in this direction and then we collect all cospectrality measures of graphs with at most six vertices with respect to three norms. Also, we give the shape of all graphs that are closest (with respect to cospectrality measure) to a given graph $G$.
کلید واژگان
Spectra of graphsedge deletion
adjacency matrix of a graph
شماره نشریه
1تاریخ نشر
2014-02-011392-11-12
ناشر
Yazd Universityسازمان پدید آورنده
University of IsfahanUniversity of Isfahan
Shiraz University
شاپا
2382-97612423-3447




