Strongly nil-clean corner rings
(ندگان)پدیدآور
Danchev, P.نوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
We show that if $R$ is a ring with an arbitrary idempotent $e$ such that $eRe$ and $(1-e)R(1-e)$ are both strongly nil-clean rings, then $R/J(R)$ is nil-clean. In particular, under certain additional circumstances, $R$ is also nil-clean. These results somewhat improves on achievements due to Diesl in J. Algebra (2013) and to Koc{s}an-Wang-Zhou in J. Pure Appl. Algebra (2016). In addition, we also give a new transparent proof of the main result of Breaz-Calugareanu-Danchev-Micu in Linear Algebra Appl. (2013) which says that if $R$ is a commutative nil-clean ring, then the full $ntimes n$ matrix ring $mathbb{M}_n(R)$ is nil-clean.
کلید واژگان
Nil-clean ringsstrongly nil-clean rings
idempotents
nilpotents
Jacobson radical
16-XX Associative rings and algebras
شماره نشریه
5تاریخ نشر
2017-10-011396-07-09
ناشر
Springer and the Iranian Mathematical Society (IMS)سازمان پدید آورنده
Department of Mathematics, University of Plovdiv, Plovdiv 4000, Bulgaria.شاپا
1017-060X1735-8515




