| dc.contributor.author | Bhagwat, C. | en_US |
| dc.contributor.author | Raghuram, A. | en_US |
| dc.date.accessioned | 1399-07-09T12:04:06Z | fa_IR |
| dc.date.accessioned | 2020-09-30T12:04:06Z | |
| dc.date.available | 1399-07-09T12:04:06Z | fa_IR |
| dc.date.available | 2020-09-30T12:04:06Z | |
| dc.date.issued | 2017-08-01 | en_US |
| dc.date.issued | 1396-05-10 | fa_IR |
| dc.date.submitted | 2017-05-15 | en_US |
| dc.date.submitted | 1396-02-25 | fa_IR |
| dc.identifier.citation | Bhagwat, C., Raghuram, A.. (2017). Endoscopy and the cohomology of $GL(n)$. Bulletin of the Iranian Mathematical Society, 43(4), 317-335. | en_US |
| dc.identifier.issn | 1017-060X | |
| dc.identifier.issn | 1735-8515 | |
| dc.identifier.uri | http://bims.iranjournals.ir/article_1167.html | |
| dc.identifier.uri | https://iranjournals.nlai.ir/handle/123456789/414680 | |
| dc.description.abstract | Let $G = {rm Res}_{F/mathbb{Q}}(GL_n)$ where $F$ is a number field. Let $S^G_{K_f}$ denote an ad`elic locally symmetric space for some level structure $K_f.$ Let ${mathcal M}_{mu,{mathbb C}}$ be an algebraic irreducible representation of $G({mathbb R})$ and we let $widetilde{mathcal{M}}_{mu,{mathbb C}}$ denote the associated sheaf on $S^G_{K_f}.$ The aim of this paper is to classify the data $(F,n,mu)$ for which cuspidal cohomology of $G$ with $mu$-coefficients, denoted $H^{bullet}_{rm cusp}(S^G_{K_f}, widetilde{mathcal{M}}_{mu,{mathbb C}})$, is nonzero for some $K_f.$ We prove nonvanishing of cuspidal cohomology when $F$ is a totally real field or a totally imaginary quadratic extension of a totally real field, and also for a general number field but when $mu$ is a parallel weight. | en_US |
| dc.format.extent | 191 | |
| dc.format.mimetype | application/pdf | |
| dc.language | English | |
| dc.language.iso | en_US | |
| dc.publisher | Springer and the Iranian Mathematical Society (IMS) | en_US |
| dc.relation.ispartof | Bulletin of the Iranian Mathematical Society | en_US |
| dc.subject | Locally symmetric spaces | en_US |
| dc.subject | cuspidal cohomology | en_US |
| dc.subject | 11-XX Number theory | en_US |
| dc.title | Endoscopy and the cohomology of $GL(n)$ | en_US |
| dc.type | Text | en_US |
| dc.type | Special Issue of BIMS in Honor of Professor Freydoon Shahidi | en_US |
| dc.citation.volume | 43 | |
| dc.citation.issue | 4 | |
| dc.citation.spage | 317 | |
| dc.citation.epage | 335 | |