Almost specification and renewality in spacing shifts
(ندگان)پدیدآور
Ahmadi Dastjerdi, D.Dabbaghian Amiri, M.نوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
Let $(Sigma_P,sigma_P)$ be the space of a spacing shifts where $Psubset mathbb{N}_0=mathbb{N}cup{0}$ and $Sigma_P={sin{0,1}^{mathbb{N}_0}: s_i=s_j=1 mbox{ if } |i-j|in P cup{0}}$ and $sigma_P$ the shift map. We will show that $Sigma_P$ is mixing if and only if it has almost specification property with at least two periodic points. Moreover, we show that if $h(sigma_P)=0$, then $Sigma_P$ is almost specified and if $h(sigma_P)>0$ and $Sigma_P$ is almost specified, then it is weak mixing.0$ and $Sigma_P$ is almost specified, then it is weak mixing. Also, some sufficient conditions for a coded $Sigma_P$ being renewal or uniquely decipherable is given. At last we will show that here are only two conjugacies from a transitive $Sigma_P$ to a subshift of ${0,1}^{mathbb{N}_0}$.
کلید واژگان
Spacing shiftsalmost specification
renewal
uniquely decipherable
37-XX Dynamical systems and ergodic theory
شماره نشریه
3تاریخ نشر
2017-06-011396-03-11
ناشر
Springer and the Iranian Mathematical Society (IMS)سازمان پدید آورنده
Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Iran.Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Iran.
شاپا
1017-060X1735-8515




