Strongly noncosingular modules
(ندگان)پدیدآور
Alagöz, Y.Durğun, Y.نوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
An R-module M is called strongly noncosingular if it has no nonzero Rad-small (cosingular) homomorphic image in the sense of Harada. It is proven that (1) an R-module M is strongly noncosingular if and only if M is coatomic and noncosingular; (2) a right perfect ring R is Artinian hereditary serial if and only if the class of injective modules coincides with the class of (strongly) noncosingular R-modules; (3)absolutely coneat modules are strongly noncosingular if and only if R is a right Max-ring and injective modules are strongly noncosingular; (4) a commutative ring R is semisimple if and only if the class of injective modules coincides with the class of strongly noncosingular R-modules.
کلید واژگان
coclosed submodules(non) cosingular modules
coatomic modules
16-XX Associative rings and algebras
شماره نشریه
4تاریخ نشر
2016-08-011395-05-11
ناشر
Springer and the Iranian Mathematical Society (IMS)سازمان پدید آورنده
İzmir Institute of Technology, Department of Mathematics, 35430, İzmir, Turkey.Bitlis Eren University, Department of Mathematics, 13000, Bitlis, Turkey.
شاپا
1017-060X1735-8515




