نمایش مختصر رکورد

dc.contributor.authorAhookhosh, M.en_US
dc.contributor.authorAmini, K.en_US
dc.contributor.authorKimiaei, M.en_US
dc.contributor.author‎Peyghami, M. R.en_US
dc.date.accessioned1399-07-09T12:03:37Zfa_IR
dc.date.accessioned2020-09-30T12:03:37Z
dc.date.available1399-07-09T12:03:37Zfa_IR
dc.date.available2020-09-30T12:03:37Z
dc.date.issued2016-08-01en_US
dc.date.issued1395-05-11fa_IR
dc.date.submitted2013-11-15en_US
dc.date.submitted1392-08-24fa_IR
dc.identifier.citationAhookhosh, M., Amini, K., Kimiaei, M., ‎Peyghami, M. R.. (2016). A limited memory adaptive trust-region approach for large-scale unconstrained optimization. Bulletin of the Iranian Mathematical Society, 42(4), 819-837.en_US
dc.identifier.issn1017-060X
dc.identifier.issn1735-8515
dc.identifier.urihttp://bims.iranjournals.ir/article_835.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/414521
dc.description.abstractThis study concerns with a trust-region-based method for solving unconstrained optimization problems. The approach takes the advantages of the compact limited memory BFGS updating formula together with an appropriate adaptive radius strategy. In our approach, the adaptive technique leads us to decrease the number of subproblems solving, while utilizing the structure of limited memory quasi-Newton formulas helps to handle large-scale problems. Theoretical analysis indicates that the new approach preserves the global convergence to a first-order stationary point under classical assumptions. Moreover, the superlinear and the quadratic convergence rates are also established under suitable conditions. Preliminary numerical experiments show the effectiveness of the proposed approach for solving large-scale unconstrained optimization problems.en_US
dc.format.extent489
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherSpringer and the Iranian Mathematical Society (IMS)en_US
dc.relation.ispartofBulletin of the Iranian Mathematical Societyen_US
dc.subjectUnconstrained optimization‎en_US
dc.subject‎trust-region‎ ‎framework‎en_US
dc.subject‎compact quasi-Newton representation‎en_US
dc.subject‎limited memory‎ ‎technique‎en_US
dc.subject‎adaptive strategyen_US
dc.subject49-XX Calculus of variations and optimal control; optimizationen_US
dc.titleA limited memory adaptive trust-region approach for large-scale unconstrained optimizationen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentFaculty of Mathematics‎, ‎University of Vienna‎, ‎Oskar-Morge-nstern-Platz 1‎, ‎1090 Vienna‎, ‎Austria.en_US
dc.contributor.departmentDepartment of‎ ‎Mathematics‎, ‎Razi University‎, ‎Kermanshah‎, ‎Iran.en_US
dc.contributor.departmentDepartment of‎ ‎Mathematics‎, ‎Asadabad Branch‎, ‎Islamic Azad University‎, ‎Asadabad‎, ‎Iran.en_US
dc.contributor.departmentK.N. Toosi University of Department of‎ ‎Mathematics‎, ‎K‎. ‎N‎. ‎Toosi University of Technology‎, ‎P.O‎. ‎Box 16315-1618‎, ‎Tehran‎, ‎Iran.en_US
dc.citation.volume42
dc.citation.issue4
dc.citation.spage819
dc.citation.epage837


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد