Strongly clean triangular matrix rings with endomorphisms
(ندگان)پدیدآور
Chen, H.Kose, H.Kurtulmaz, Y.نوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
A ring $R$ is strongly clean provided that every element in $R$ is the sum of an idempotent and a unit that commutate. Let $T_n(R,sigma)$ be the skew triangular matrix ring over a local ring $R$ where $sigma$ is an endomorphism of $R$. We show that $T_2(R,sigma)$ is strongly clean if and only if for any $ain 1+J(R), bin J(R)$, $l_a-r_{sigma(b)}: Rto R$ is surjective. Further, $T_3(R,sigma)$ is strongly clean if $l_{a}-r_{sigma(b)}, l_{a}-r_{sigma^2(b)}$ and $l_{b}-r_{sigma(a)}$ are surjective for any $ain U(R),bin J(R)$. The necessary condition for $T_3(R,sigma)$ to be strongly clean is also obtained.
کلید واژگان
Strongly clean ringsskew triangular matrix rings
local rings
16-XX Associative rings and algebras
شماره نشریه
6تاریخ نشر
2015-12-011394-09-10
ناشر
Springer and the Iranian Mathematical Society (IMS)سازمان پدید آورنده
Department of Mathematics, Hangzhou Normal University, Hangzhou 310034, ChinaDepartment of Mathematics, Ahi Evran University, Kirsehir, Turkey
Department of Mathematics, Bilkent University, Ankara, Turkey
شاپا
1017-060X1735-8515




