| dc.contributor.author | Takil Mutlu, F. | en_US |
| dc.date.accessioned | 1399-07-09T12:03:19Z | fa_IR |
| dc.date.accessioned | 2020-09-30T12:03:19Z | |
| dc.date.available | 1399-07-09T12:03:19Z | fa_IR |
| dc.date.available | 2020-09-30T12:03:19Z | |
| dc.date.issued | 2015-12-01 | en_US |
| dc.date.issued | 1394-09-10 | fa_IR |
| dc.date.submitted | 2014-06-03 | en_US |
| dc.date.submitted | 1393-03-13 | fa_IR |
| dc.identifier.citation | Takil Mutlu, F.. (2015). On Ads-modules with the SIP. Bulletin of the Iranian Mathematical Society, 41(6), 1355-1363. | en_US |
| dc.identifier.issn | 1017-060X | |
| dc.identifier.issn | 1735-8515 | |
| dc.identifier.uri | http://bims.iranjournals.ir/article_698.html | |
| dc.identifier.uri | https://iranjournals.nlai.ir/handle/123456789/414421 | |
| dc.description.abstract | The class of ads modules with the SIP (briefly, $SA$-modules) is studied. Various conditions for a module to be $SA$-module are given. It is proved that for a quasi-continuous module $M$, $M$ is a UC-module if and only if $M$ is an $SA$-module. Also, it is proved that the direct sum of two $SA$-modules as $R$-modules is an $SA$-module when $R$ is the sum of the annihilators of these modules. | en_US |
| dc.format.extent | 123 | |
| dc.format.mimetype | application/pdf | |
| dc.language | English | |
| dc.language.iso | en_US | |
| dc.publisher | Springer and the Iranian Mathematical Society (IMS) | en_US |
| dc.relation.ispartof | Bulletin of the Iranian Mathematical Society | en_US |
| dc.subject | Ads-modules | en_US |
| dc.subject | summand intersection property | en_US |
| dc.subject | extending modules | en_US |
| dc.subject | 16-XX Associative rings and algebras | en_US |
| dc.title | On Ads-modules with the SIP | en_US |
| dc.type | Text | en_US |
| dc.type | Research Paper | en_US |
| dc.contributor.department | Department of
Mathematics, Anadolu University, 26470, Eskisehir, Turkey | en_US |
| dc.citation.volume | 41 | |
| dc.citation.issue | 6 | |
| dc.citation.spage | 1355 | |
| dc.citation.epage | 1363 | |